Due to the emergence of wide-spread infectious diseases, there is a heightened need for antimicrobial and/or antifouling coatings that can be used to prevent infection and transmission in a variety of applications, ranging from healthcare devices to public facilities. While antimicrobial coatings kill pathogenic bacteria upon contact with the surface, the antimicrobial function alone often lacks long-term effectiveness due to the accumulation of dead cells and their debris on the surface, thus reducing the performance of the coating over time. Therefore, it is desirable to develop coatings with the dual functions of antimicrobial efficacy and fouling resistance, in which antifouling coatings provide the added benefit of preventing the adhesion of dead cells and debris. Leveraging the outstanding antifouling properties of zwitterionic coatings, we synthesized copolymers with this antimicrobial-antifouling dual function by immobilizing lysozyme, a common antimicrobial enzyme, to the surface of a pyridinium-based zwitterionic copolymer. Specifically, poly(4-vinylpyridine- co -pentaflurophenyl methacrylate- co -divinyl benzene) [P(4VP-PFPMA-DVB)] thin films were synthesized by an all-dry vapor deposition technique, initiated Chemical Vapor Deposition, and derivatized using 1,3-propane sultone to obtain sulfobetaine moieties. Lysozyme, known to hydrolyze polysaccharides in the cell wall of Gram-positive bacteria, was immobilized by forming amide bonds with the copolymer coating via nucleophilic substitution of the pentafluorophenyl group. The antifouling and antibacterial performance of the novel lysozyme-zwitterionic coating was tested against Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa . A reduction in surface adhesion of 87% was achieved for P. aeruginosa , and of 75% for B. subtilis , when compared to a common poly(vinyl chloride) surface. The lysozyme-zwitterionic coating also deactivated 67% of surface-attached Gram-positive bacteria, B. subtilis . This novel dual-function material can produce anti -infection surfaces for medical devices and surgical tools, personal care products, and surfaces in public facilities. 
                        more » 
                        « less   
                    
                            
                            Novel Antimicrobial Surfaces to Defeat COVID-19 Transmission
                        
                    
    
            Abstract Antimicrobial surface coatings function as a contact biocide and are extensively used to prevent the growth and transmission of pathogens on environmental surfaces. Currently, scientists and researchers are intensively working to develop antimicrobial, antiviral coating solutions that would efficiently impede/stop the contagion of COVID-19 via surface contamination. Herein we present a flavonoid-based antimicrobial surface coating fabricated by laser processing that has the potential to eradicate COVID-19 contact transmission. Quercetin-containing coatings showed better resistance to microbial colonization than antibiotic–containing ones. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1762202
- PAR ID:
- 10221064
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 5
- Issue:
- 56
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 2839 to 2851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Bacterial biofilms are notoriously problematic in applications ranging from biomedical implants to ship hulls. Cationic, amphiphilic antibacterial surface coatings delay the onset of biofilm formation by killing microbes on contact, but they lose effectiveness over time due to non‐specific binding of biomass and biofilm formation. Harsh treatment methods are required to forcibly expel the biomass and regenerate a clean surface. Here, a simple, dynamically reversible method of polymer surface coating that enables both chemical killing on contact, and on‐demand mechanical delamination of surface‐bound biofilms, by triggered depolymerization of the underlying antimicrobial coating layer, is developed. Antimicrobial polymer derivatives based on α‐lipoic acid (LA) undergo dynamic and reversible polymerization into polydisulfides functionalized with biocidal quaternary ammonium salt groups. These coatings kill >99.9% ofStaphylococcus aureuscells, repeatedly for 15 cycles without loss of activity, for moderate microbial challenges (≈105colony‐forming units (CFU) mL−1, 1 h), but they ultimately foul under intense challenges (≈107CFU mL−1, 5 days). The attached biofilms are then exfoliated from the polymer surface by UV‐triggered degradation in an aqueous solution at neutral pH. This work provides a simple strategy for antimicrobial coatings that can kill bacteria on contact for extended timescales, followed by triggered biofilm removal under mild conditions.more » « less
- 
            null (Ed.)The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N -methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4- N -methylpyridyl)porphine (ZnTMPyP 4+ ), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm 2 ), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.more » « less
- 
            Food borne illness remains a major threat to public health despite new governmental guidelines and industry standards. Cross-contamination of both pathogenic and spoilage bacteria from the manufacturing environment can promote consumer illness and food spoilage. While there is guidance in cleaning and sanitation procedures, manufacturing facilities can develop bacterial harborage sites in hard-to-reach areas. New technologies to eliminate these harborage sites include chemically modified coatings that can improve surface characteristics or incorporate embedded antibacterial compounds. In this article we synthesize a 16 carbon length quaternary ammonium bromide (C16QAB) modified polyurethane and perfluoropolyether (PFPE) copolymer coating with low surface energy and bactericidal properties. The introduction of PFPE to the polyurethane coatings lowered the critical surface tension from 18.07 mN m−1 in unmodified polyurethane to 13.14 mN m−1 in modified polyurethane. C16QAB + PFPE polyurethane was bactericidal against Listeria monocytogenes (>6 log reduction) and Salmonella enterica (>3 log reduction) after just eight hours of contact. The combination of low surface tension from the perfluoropolyether and antimicrobial from the quaternary ammonium bromide produced a multifunctional polyurethane coating suitable for coating on non-food contact food production surfaces to prevent survival and persistence of pathogenic and spoilage organisms.more » « less
- 
            A coating that can be activated by moisture found in respiratory droplets could be a convenient and effective way to control the spread of airborne pathogens and reduce fomite transmission. Here, the ability of a novel 6-hydroxycatechol-containing polymer to function as a self-disinfecting coating on the surface of polypropylene (PP) fabric was explored. Catechol is the main adhesive molecule found in mussel adhesive proteins. Molecular oxygen found in an aqueous solution can oxidize catechol and generate a known disinfectant, hydrogen peroxide (H2O2), as a byproduct. However, given the limited amount of moisture found in respiratory droplets, there is a need to enhance the rate of catechol autoxidation to generate antipathogenic levels of H2O2. 6-Hydroxycatechol contains an electron donating hydroxyl group on the 6-position of the benzene ring, which makes catechol more susceptible to autoxidation. 6-Hydroxycatechol-coated PP generated over 3000 μM of H2O2 within 1 h when hydrated with a small amount of aqueous solution (100 μL of PBS). The generated H2O2 was three orders of magnitude higher when compared to the amount generated by unmodified catechol. 6-Hydroxycatechol-containing coating demonstrated a more effective antimicrobial effect against both Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria when compared to unmodified catechol. Similarly, the self-disinfecting coating reduced the infectivity of both bovine viral diarrhea virus and human coronavirus 229E by as much as a 2.5 log reduction value (a 99.7% reduction in viral load). Coatings containing unmodified catechol did not generate sufficient H2O2 to demonstrate significant virucidal effects. 6-Hydroxycatechol-containing coating can potentially function as a self-disinfecting coating that can be activated by the moisture present in respiratory droplets to generate H2O2 for disinfecting a broad range of pathogens.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    