skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced performance of Mo 2 P monolayer as lithium-ion battery anode materials by carbon and nitrogen doping: a first principles study
By means of density functional theory (DFT) computations, we explored the potential of carbon- and nitrogen-doped Mo 2 P (CMP and NMP) layered materials as the representative of transition metal phosphides (TMPs) for the development of lithium-ion battery (LIB) anode materials, paying special attention to the synergistic effects of the dopants. Both CMP and NMP have exceptional stabilities and excellent electronic conductivity, and a high theoretical maximum storage capacity of ∼ 486 mA h g −1 . Li-ion diffusion barriers on the two-dimensional (2D) CMP and NMP surfaces are extremely low (∼0.036 eV), and it is expected that on these 2D layers Li can diffuse 10 4 times faster than that on MoS 2 and graphene at room temperature, and both monolayers have relatively low average open-circuit voltage (0.38 and 0.4 eV). All these exceptional properties make CMP and NMP monolayers as promising candidates for high-performance LIB anode materials, which also demonstrates that simple doping is an effective strategy to enhance the performance of anode materials in rechargeable batteries.  more » « less
Award ID(s):
1849243
PAR ID:
10221161
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
6
ISSN:
1463-9076
Page Range / eLocation ID:
4030 to 4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium-ion batteries (LIBs) are widely used energy storage devices, and sodium-ion batteries (SIBs) are promising alternatives to LIBs because sodium is of high abundance and low toxicity. However, a dominant obstacle for the advancement of LIBs and SIBs is the lack of high capacity anode materials, especially for SIBs. Here, we propose that three characteristics, namely appropriate pore size, suitable pore distribution, and an entirely planar topology, can help achieve ultrahigh capacity 2D anode materials. Under such guidelines, we constructed a B 7 P 2 monolayer, and investigated its potential as a LIB/SIB anode material by means of density functional theory (DFT) computations. Encouragingly, the B 7 P 2 monolayer possesses all the essential properties of a high-capacity LIB/SIB anode: its high stability ensures the experimental feasibility of synthesis, its metallicity does not change upon Li/Na adsorption and desorption, the Li/Na can well diffuse on the surface, and the open-circuit voltage is in a good range. Most importantly, the B 7 P 2 monolayer has a high storage capacity of 3117 mA h g −1 for both LIBs and SIBs, and this capacity value ranks among the highest for 2D SIB anode materials. This study offers us some good clues to design/discover other anode materials with ultrahigh capacities, and serves us another vivid example that (implicit and hidden) trends/rules in the literature can guide us in the design of functional materials more efficiently. 
    more » « less
  2. The notorious polysulfide shuttle effect is a crucial factor responsible for the degradation of Li-S batteries. A good way to suppress the shuttle effect is to effectively anchor dissoluble lithium polysulfides (LPSs, Li 2 S n ) on appropriate substrates. Previous studies have revealed that Li of Li 2 S n is prone to interact with the N of N-containing materials to form Li–N bonds. In this work, by means of density functional theory (DFT) computations, we explored the possibility to form Li bonds on ten different N-containing monolayers, including BN, C 2 N, C 2 N 6 S 3 , C 9 N 4 , a covalent triazine framework (CTF), g -C 3 N 4 , p -C 3 N 4 , C 3 N 5 , S -N 2 S, and T -N 2 S, by examining the adsorption behavior of Li 2 S n ( n = 1, 2, 3, 4, 6, 8) on these two-dimensional (2D) anchoring materials (AMs), and investigated the performance of the formed Li bonds (if any) in inhibiting the shuttle effect. By comparing and analyzing the nitrogen content, the N-containing pore size, charge transfer, and Li bonds, we found that the N content and N-containing pore size correlate with the number of Li bonds, and the formed Li–N bonds between LPSs and AMs correspond well with the adsorption energies of the LPSs. The C 9 N 4 and C 2 N 6 S 3 monolayers were identified as promising AMs in Li-S batteries. From the view of Li bonds, this work provides guidelines for designing 2D N-containing materials as anchoring materials to reduce the shuttle effect in Li-S batteries, and thus improving the performance of Li-S batteries. 
    more » « less
  3. Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe 3 O 4 and reduced-graphene-oxide (Fe 3 O 4 @RGO) anode materials. We demonstrate the relationship between the media pH and Fe 3 O 4 @RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe 3 O 4 @GO sheets at different surrounding pH values, and porosity of the resulted Fe 3 O 4 @RGO anode. The anode shows a high surface area of 338.8 m 2 g −1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe 3 O 4 @RGO delivers high specific-charge capacities of 740 mA h g −1 to 200 mA h g −1 at various current densities of 0.5 A g −1 to 10 A g −1 , and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe 3 O 4 -coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe 3 O 4 and other metal oxide nanoparticles on highly porous RGO. 
    more » « less
  4. Abstract A thin solid electrolyte with a high Li+conductivity is used to separate the metallic lithium anode and the cathode in an all‐solid‐state Li‐metal battery. However, most solid Li‐ion electrolytes have a small electrochemical stability window, large interfacial resistance, and cannot block lithium‐dendrite growth when lithium is plated on charging of the cell. Mg2+stabilizes a rhombohedral NASICON‐structured solid electrolyte of the formula Li1.2Mg0.1Zr1.9(PO4)3(LMZP). This solid electrolyte has Li‐ion conductivity two orders of magnitude higher at 25 °C than that of the triclinic LiZr2(PO4)3.7Li and6Li NMR confirm the Li‐ions in two different crystallographic sites of the NASICON framework with 85% of the Li‐ions having a relatively higher mobility than the other 15%. The anode–electrolyte interface is further investigated with symmetric Li/LMZP/Li cell testing, while the cathode–electrolyte interface is explored with an all‐solid‐state Li/LMZP/LiFePO4cell. The enhanced performance of these cells enabled by the Li1.2Mg0.1Zr1.9(PO4)3solid electrolyte is stable upon repeated charge/discharge cycling. 
    more » « less
  5. Cost-effective production of low cobalt Li-ion battery (LIB) cathode materials is of great importance to the electric vehicle (EV) industry to achieve a zero-carbon economy. Among the various low cobalt cathodes, Ni-rich lithium nickel cobalt manganese oxide (NCM/NMC)-based layered materials are commonly used in EVs and are attracting more attention of the scientific community due to their high specific capacity and energy density. Various synthesis routes are already established to produce Ni-rich NCM cathodes with uniform particle size distribution and high tap density. Continuous production of highly pure Ni-rich cathode materials with uniformity in inter/intra-particle compositional distribution is critically required. On the other hand, cation mixing, particle cracking, and parasitic side reactions at higher voltage and temperature are some of the primary challenges of working with Ni-rich NCM cathodes. During the past five years, several advanced modification strategies such as coating, doping, core–shell, gradient structure and single crystal growth have been explored to improve the NCM cathode performance in terms of specific capacity, rate-capability and cycling stability. The scientific advancements in the field of Ni-rich NCM cathodes in terms of manufacturing processes, material challenges, modification techniques, and also the future research direction of LIB research are critically reviewed in this article. 
    more » « less