In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs.
more »
« less
Chorus: a Programming Framework for Building Scalable Differential Privacy Mechanisms
Differential privacy is fast becoming the gold standard in enabling statistical analysis of data while protecting the privacy of individuals. However, practical use of differential privacy still lags behind research progress because research prototypes cannot satisfy the scalability requirements of production deployments. To address this challenge, we present Chorus, a framework for building scalable differential privacy mechanisms which is based on cooperation between the mechanism itself and a high-performance production database management system (DBMS). We demonstrate the use of Chorus to build the first highly scalable implementations of complex mechanisms like Weighted PINQ, MWEM, and the matrix mechanism. We report on our experience deploying Chorus at Uber, and evaluate its scalability on real-world queries.
more »
« less
- Award ID(s):
- 1730628
- PAR ID:
- 10221256
- Date Published:
- Journal Name:
- 2020 IEEE European Symposium on Security and Privacy (EuroS&P)
- Page Range / eLocation ID:
- 535 to 551
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs.more » « less
-
Differential privacy mechanisms such as the Gaussian or Laplace mechanism have been widely used in data analytics for preserving individual privacy. However, they are mostly designed for continuous outputs and are unsuitable for scenarios where discrete values are necessary. Although various quantization mechanisms were proposed recently to generate discrete outputs under differential privacy, the outcomes are either biased or have an inferior accuracy-privacy trade-off. In this paper, we propose a family of quantization mechanisms that is unbiased and differentially private. It has a high degree of freedom and we show that some existing mechanisms can be considered as special cases of ours. To find the optimal mechanism, we formulate a linear optimization that can be solved efficiently using linear programming tools. Experiments show that our proposed mechanism can attain a better privacy-accuracy trade-off compared to baselines.more » « less
-
This paper develops a framework for privatizing the spectrum of the Laplacian of an undirected graph using differential privacy. We consider two privacy formulations. The first obfuscates the presence of edges in the graph and the second obfuscates the presence of nodes. We compare these two privacy formulations and show that the privacy formulation that considers edges is better suited to most engineering applications. We use the bounded Laplace mechanism to provide (epsilon, delta)-differential privacy to the eigenvalues of a graph Laplacian, and we pay special attention to the algebraic connectivity, which is the Laplacian's the second smallest eigenvalue. Analytical bounds are presented on the accuracy of the mechanisms and on certain graph properties computed with private spectra. A suite of numerical examples confirms the accuracy of private spectra in practice.more » « less
-
Organized surveillance, especially by governments poses a major challenge to individual privacy, due to the resources governments have at their disposal, and the possibility of overreach. Given the impact of invasive monitoring, in most democratic countries, government surveillance is, in theory, monitored and subject to public oversight to guard against violations. In practice, there is a difficult fine balance between safeguarding individual’s privacy rights and not diluting the efficacy of national security investigations, as exemplified by reports on government surveillance programs that have caused public controversy, and have been challenged by civil and privacy rights organizations. Surveillance is generally conducted through a mechanism where federal agencies obtain a warrant from a federal or state judge (e.g., the US FISA court, Supreme Court in Canada) to subpoena a company or service-provider (e.g., Google, Microsoft) for their customers’ data. The courts provide annual statistics on the requests (accepted, rejected), while the companies provide annual transparency reports for public auditing. However, in practice, the statistical information provided by the courts and companies is at a very high level, generic, is released after-the-fact, and is inadequate for auditing the operations. Often this is attributed to the lack of scalable mechanisms for reporting and transparent auditing. In this paper, we present SAMPL, a novel auditing framework which leverages cryptographic mechanisms, such as zero knowledge proofs, Pedersen commitments, Merkle trees, and public ledgers to create a scalable mechanism for auditing electronic surveillance processes involving multiple actors. SAMPL is the first framework that can identify the actors (e.g., agencies and companies) that violate the purview of the court orders. We experimentally demonstrate the scalability for SAMPL for handling concurrent monitoring processes without undermining their secrecy and auditability.more » « less
An official website of the United States government

