skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Robust navigation of a soft growing robot by exploiting contact with the environment
Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots, where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. As a result, constraining paths of the robot to not interact with the environment is not necessary and may be limiting. In this article, we mathematically formalize interactions of a soft growing robot with a planar environment in an empirical kinematic model. Using this interaction model, we develop a method to plan paths for the robot to a destination. Rather than avoiding contact with the environment, the planner exploits obstacle contact when beneficial for navigation. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.  more » « less
Award ID(s):
1637446
NSF-PAR ID:
10221271
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The International Journal of Robotics Research
Volume:
39
Issue:
14
ISSN:
0278-3649
Page Range / eLocation ID:
1724 to 1738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For many types of robots, avoiding obstacles is necessary to prevent damage to the robot and environment. As a result, obstacle avoidance has historically been an im- portant problem in robot path planning and control. Soft robots represent a paradigm shift with respect to obstacle avoidance because their low mass and compliant bodies can make collisions with obstacles inherently safe. Here we consider the benefits of intentional obstacle collisions for soft robot navigation. We develop and experimentally verify a model of robot-obstacle interaction for a tip-extending soft robot. Building on the obstacle interaction model, we develop an algorithm to determine the path of a growing robot that takes into account obstacle collisions. We find that obstacle collisions can be beneficial for open-loop navigation of growing robots because the obstacles passively steer the robot, both reducing the uncertainty of the location of the robot and directing the robot to targets that do not lie on a straight path from the starting point. Our work shows that for a robot with predictable and safe interactions with obstacles, target locations in a cluttered, mapped environment can be reached reliably by simply setting the initial trajectory. This has implications for the control and design of robots with minimal active steering. 
    more » « less
  2. null (Ed.)
    The field of soft robotics is grounded on the idea that, due to their inherent compliance, soft robots can safely interact with the environment. Thus, the development of effective planning and control pipelines for soft robots should incorporate reliable robot-environment interaction models. This strategy enables soft robots to effectively exploit contacts to autonomously navigate and accomplish tasks in the environment. However, for a class of soft robots, namely vine-inspired, tip-extending or "vine" robots, such interaction models and the resulting planning and control strategies do not exist. In this paper, we analyze the behavior of vine robots interacting with their environment and propose an obstacle-interaction model that characterizes the bending and wrinkling deformation induced by the environment. Starting from this, we devise a novel obstacle-interaction planning method for these robots. We show how obstacle interactions can be effectively leveraged to enlarge the set of reachable workspace for the robot tip, and verify our findings with both simulated and real experiments. Our work improves the capabilities of this new class of soft robot, helping to advance the field of soft robotics. 
    more » « less
  3. Natural environments are often filled with obstacles and disturbances. Traditional navigation and planning approaches normally depend on finding a traversable “free space” for robots to avoid unexpected contact or collision. We hypothesize that with a better understanding of the robot–obstacle interactions, these collisions and disturbances can be exploited as opportunities to improve robot locomotion in complex environments. In this article, we propose a novel obstacle disturbance selection (ODS) framework with the aim of allowing robots to actively select disturbances to achieve environment-aided locomotion. Using an empirically characterized relationship between leg–obstacle contact position and robot trajectory deviation, we simplify the representation of the obstacle-filled physical environment to a horizontal-plane disturbance force field. We then treat each robot leg as a “disturbance force selector” for prediction of obstacle-modulated robot dynamics. Combining the two representations provides analytical insights into the effects of gaits on legged traversal in cluttered environments. We illustrate the predictive power of the ODS framework by studying the horizontal-plane dynamics of a quadrupedal robot traversing an array of evenly-spaced cylindrical obstacles with both bounding and trotting gaits. Experiments corroborate numerical simulations that reveal the emergence of a stable equilibrium orientation in the face of repeated obstacle disturbances. The ODS reduction yields closed-form analytical predictions of the equilibrium position for different robot body aspect ratios, gait patterns, and obstacle spacings. We conclude with speculative remarks bearing on the prospects for novel ODS-based gait control schemes for shaping robot navigation in perturbation-rich environments. 
    more » « less
  4. Worm-like robots have demonstrated great potential in navigating through environments requiring body shape deformation. Some examples include navigating within a network of pipes, crawling through rubble for search and rescue operations, and medical applications such as endoscopy and colonoscopy. In this work, we developed path planning optimization techniques and obstacle avoidance algorithms for the peristaltic method of locomotion of worm-like robots. Based on our previous path generation study using a modified rapidly exploring random tree (RRT), we have further introduced the Bézier curve to allow more path optimization flexibility. Using Bézier curves, the path planner can explore more areas and gain more flexibility to make the path smoother. We have calculated the obstacle avoidance limitations during turning tests for a six-segment robot with the developed path planning algorithm. Based on the results of our robot simulation, we determined a safe turning clearance distance with a six-body diameter between the robot and the obstacles. When the clearance is less than this value, additional methods such as backward locomotion may need to be applied for paths with high obstacle offset. Furthermore, for a worm-like robot, the paths of subsequent segments will be slightly different than the path of the head segment. Here, we show that as the number of segments increases, the differences between the head path and tail path increase, necessitating greater lateral clearance margins. 
    more » « less
  5. Simulating soft robots in cluttered environments remains an open problem due to the challenge of capturing complex dynamics and interactions with the environment. Fur- thermore, fast simulation is desired for quickly exploring robot behaviors in the context of motion planning. In this paper, we examine a particular class of inflated-beam soft growing robots called “vine robots,” and present a dynamics simulator that captures general behaviors, handles robot-object interactions, and runs faster than real time. The simulator framework uses a simplified multi-link, rigid-body model with contact constraints. To bridge the sim-to-real gap, we develop methods for fitting model parameters based on video data of a robot in motion and in contact with an environment. We provide examples of simulations, including several with fit parameters, to show the qualitative and quantitative agreement between simulated and real behaviors. Our work demonstrates the capabilities of this high-speed dynamics simulator and its potential for use in the control of soft robots. 
    more » « less