skip to main content


Title: A combined RAD-Seq and WGS approach reveals the genomic basis of yellow color variation in bumble bee Bombus terrestris
Abstract

Bumble bees exhibit exceptional diversity in their segmental body coloration largely as a result of mimicry. In this study we sought to discover genes involved in this variation through studying a lab-generated mutant in bumble beeBombus terrestris,in which the typical black coloration of the pleuron, scutellum, and first metasomal tergite is replaced by yellow, a color variant also found in sister lineages toB. terrestris. Utilizing a combination of RAD-Seq and whole-genome re-sequencing, we localized the color-generating variant to a single SNP in the protein-coding sequence of transcription factorcut. This mutation generates an amino acid change that modifies the conformation of a coiled-coil structure outside DNA-binding domains. We found that all sequenced Hymenoptera, including sister lineages, possess the non-mutant allele, indicating different mechanisms are involved in the same color transition in nature.Cutis important for multiple facets of development, yet this mutation generated no noticeable external phenotypic effects outside of setal characteristics. Reproductive capacity was reduced, however, as queens were less likely to mate and produce female offspring, exhibiting behavior similar to that of workers. Our research implicates a novel developmental player in pigmentation, and potentially caste, thus contributing to a better understanding of the evolution of diversity in both of these processes.

 
more » « less
NSF-PAR ID:
10221317
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Geographic variation in insect coloration is among the most intriguing examples of rapid phenotypic evolution and provides opportunities to study mechanisms of phenotypic change and diversification in closely related lineages. The bumble beeBombus bifariuscomprises two geographically disparate color groups characterized by red‐banded and black‐banded abdominal pigmentation, but with a range of spatially and phenotypically intermediate populations across western North America. Microsatellite analyses have revealed thatB. bifariusin the USA are structured into two major groups concordant with geography and color pattern, but also suggest ongoing gene flow among regional populations. In this study, we better resolve the relationships among major color groups to better understand evolutionary mechanisms promoting and maintaining such polymorphism. We analyze >90,000 and >25,000 single‐nucleotide polymorphisms derived from transcriptome (RNAseq) and double digest restriction site associatedDNAsequencing (ddRAD), respectively, in representative samples from spatial and color pattern extremes inB. bifariusas well as phenotypic and geographic intermediates. Both ddRADandRNAseq data illustrate substantial genome‐wide differentiation of the red‐banded (eastern) color form from both black‐banded (western) and intermediate (central) phenotypes and negligible differentiation among the latter populations, with no obvious admixture among bees from the two major lineages. Results thus indicate much stronger background differentiation amongB. bifariuslineages than expected, highlighting potential challenges for revealing loci underlying color polymorphism from population genetic data alone. These findings will have significance for resolving taxonomic confusion in this species and in future efforts to investigate color‐pattern evolution inB. bifariusand other polymorphic bumble bee species.

     
    more » « less
  2. Abstract

    As the genetic basis of natural and domesticated variation has been described in recent years, a number of hotspot genes have been repeatedly identified as the targets of selection, Heliconius butterflies display a spectacular diversity of pattern variants in the wild and the genetic basis of these patterns has been well-described. Here, we sought to identify the mechanism behind an unusual pattern variant that is instead found in captivity, the ivory mutant, in which all scales on both the wings and body become white or yellow. Using a combination of autozygosity mapping and coverage analysis from 37 captive individuals, we identify a 78-kb deletion at the cortex wing patterning locus, a gene which has been associated with wing pattern evolution in H. melpomene and 10 divergent lepidopteran species. This deletion is undetected among 458 wild Heliconius genomes samples, and its dosage explains both homozygous and heterozygous ivory phenotypes found in captivity. The deletion spans a large 5′ region of the cortex gene that includes a facultative 5′UTR exon detected in larval wing disk transcriptomes. CRISPR mutagenesis of this exon replicates the wing phenotypes from coding knock-outs of cortex, consistent with a functional role of ivory-deleted elements in establishing scale color fate. Population demographics reveal that the stock giving rise to the ivory mutant has a mixed origin from across the wild range of H. melpomene, and supports a scenario where the ivory mutation occurred after the introduction of cortex haplotypes from Ecuador. Homozygotes for the ivory deletion are inviable while heterozygotes are the targets of artificial selection, joining 40 other examples of allelic variants that provide heterozygous advantage in animal populations under artificial selection by fanciers and breeders. Finally, our results highlight the promise of autozygosity and association mapping for identifying the genetic basis of aberrant mutations in captive insect populations.

     
    more » « less
  3. Abstract Aim

    A central aim of biogeography is to understand how biodiversity is generated and maintained across landscapes. Here, we establish phylogenetic and population genetic patterns in a widespread reptile to quantify the influence of historical biogeography and current environmental variation on patterns of genetic diversity.

    Location

    Western North America.

    Taxon

    Western terrestrial garter snake,Thamnophis elegans.

    Methods

    We used double‐digest RADseq to estimate phylogenetic relationships and characterize population genetic structure across the three widespread subspecies ofTelegans:T. e. vagrans(wandering garter snake),Teelegans(mountain garter snake) andTeterrestris(coast garter snake). We assessed patterns of dispersal and vicariance across biogeographic regions using ancestral area reconstruction (AAR) and deviations from isolation‐by‐distance across the landscape using estimated effective migration surfaces (EEMS). We identified environmental variables potentially shaping local adaptation in regional lineages using genetic‐environment association (GEA) analyses.

    Results

    We recovered three well‐differentiated genetic groups that correspond to the three subspecies. AAR analyses inferred the eastern Cascade Range as the ancestral area, with dispersal to both the east and west across western North America. Populations ofT. e. elegansdisplayed a latitudinal gradient in genetic variation across the Sierra Nevada and northern California, while populations ofTeterrestrisshow discrete genetic breaks consistent with well‐known biogeographic barriers. Lastly, GEA analyses identified allele frequency shifts at loci associated with a common set of environmental variables in bothTeelegansandTeterrestris.

    Main Conclusion

    T. elegansis composed of distinct evolutionary lineages, each with its own geographic range and history of diversification.TeelegansandTeterrestrisshow unique patterns of diversification as populations dispersed from east to west and while adapting to the new environments they colonized. Historical events, landscape features and environmental variation have all contributed to patterns of differentiation inTelegans.

     
    more » « less
  4. Abstract

    As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee,Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Rocky Mountain'’ color form with ferruginous mid‐abdominal segments (B.m.melanopygus) and a southern “Pacific'’ form with black mid‐abdominal segments (B.m.edwardsii). These morphs meet in a mimetic transition zone in northern California and southern Oregon that is more narrow and transitions further west than comimetic bumble bee species. To understand the historical formation of this mimicry zone, we assessed color distribution data forB.melanopygusfrom the last 100 years. We then examined gene flow among the color forms in the transition zone by comparing sequences from mitochondrial COI barcode sequences, color‐controlling loci, and the rest of the nuclear genome. These data support two geographically distinct mitochondrial haplogroups aligned to the ancestrally ferruginous and black forms that meet within the color transition zone. This clustering is also supported by the nuclear genome, which, while showing strong admixture across individuals, distinguishes individuals most by their mitochondrial haplotype, followed by geography. These data suggest the two lineages most likely were historically isolated, acquired fixed color differences, and then came into secondary contact with ongoing gene flow. The transition zone, however, exhibits asymmetries: mitochondrial haplotypes transition further south than color pattern, and both transition over shorter distances in the south. This system thus demonstrates alternative patterns of gene flow that occur in contact zones, presenting another example of mito‐nuclear discordance. Discordant gene flow is inferred to most likely be driven by a combination of mimetic selection, dominance effects, and assortative mating.

     
    more » « less
  5. Abstract

    Skin coloration and patterning play a key role in animal survival and reproduction. As a result, color phenotypes have generated intense research interest. In aposematic species, color phenotypes can be important in avoiding predation and in mate choice. However, we still know little about the underlying genetic mechanisms of color production, particularly outside of a few model organisms. Here we seek to understand the genetic mechanisms underlying the production of different colors and how these undergo shifting expression patterns throughout development. To answer this, we examine gene expression of two different color patches(yellow and green) in a developmental time series from young tadpoles through adults in the poison frogOophaga pumilio.We identified six genes that were differentially expressed between color patches in every developmental stage (casq1, hand2, myh8, prva, tbx3,andzic1).Of these,hand2, myh8, tbx3,andzic1have either been identified or implicated as important in coloration in other taxa.Casq1andprvabuffer Ca2+and are a Ca2+transporter, respectively, and may play a role in preventing autotoxicity to pumiliotoxins, which inhibit Ca2+-ATPase activity. We identify further candidate genes (e.g.,adh, aldh1a2, asip, lef1, mc1r, tyr, tyrp1, xdh), and identify a suite of hub genes that likely play a key role in integumental reorganization during development (e.g., collagen type I–IV genes, lysyl oxidases) which may also affect coloration via structural organization of chromatophores that contribute to color and pattern. Overall, we identify the putative role of a suite of candidate genes in the production of different color types in a polytypic, aposematic species.

     
    more » « less