skip to main content


Title: Modeling Small Structural and Environmental Differences in Solids with 15 N NMR Chemical Shift Tensors
Abstract

The ability to theoretically predict accurate NMR chemical shifts in solids is increasingly important due to the role such shifts play in selecting among proposed model structures. Herein, two theoretical methods are evaluated for their ability to assign15N shifts from guanosine dihydrate to one of the two independent molecules present in the lattice. The NMR data consist of15N shift tensors from 10 resonances. Analysis using periodic boundary or fragment methods consider a benchmark dataset to estimate errors and predict uncertainties of 5.6 and 6.2 ppm, respectively. Despite this high accuracy, only one of the five sites were confidently assigned to a specific molecule of the asymmetric unit. This limitation is not due to negligible differences in experimental data, as most sites exhibit differences of >6.0 ppm between pairs of resonances representing a given position. Instead, the theoretical methods are insufficiently accurate to make assignments at most positions.

 
more » « less
Award ID(s):
1955554
NSF-PAR ID:
10221440
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
22
Issue:
10
ISSN:
1439-4235
Page Range / eLocation ID:
p. 1008-1017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Per‐ and polyfluoroalkyl substances (PFAS) are robust “forever” chemicals that have become global environmental contaminants due to their inability to degrade using traditional techniques. In addition to the persistent nature of PFAS, the structural and functional diversity in PFAS creates a unique challenge in identification and remediation. Their identification is further complicated by the absence of standards for many PFAS. This work is aimed at developing a protocol for computing and establishing accurate19F NMR chemical shifts for PFAS using density functional theory (DFT), which can aid in the identification of PFAS. The impact of solvation and basis sets was evaluated by comparing the computed data with the experimental measurements. Results showed the addition of dispersion corrections in the methodology improve the accuracy of calculated NMR parameters within 4 ppm of the experimental values. Adding a second diffuse function and additional polarization did not improve the accuracy, likely because of the electronegativity of fluorine which does not allow the electron density of fluorine atoms to be polarized. The inclusion of various implicit solvation (DMSO, chloroform, and water) yielded negligible differences in accuracy, and were overall less accurate than the gas phase calculations. The most accurate methodology was then applied to more environmentally relevant PFAS, and the impact of helical nature on the NMR signatures was evaluated. The implication of this work is to be able to improve the identification of structurally diverse PFAS using the19F NMR.

     
    more » « less
  2. Abstract

    Three paramagnetic CoIImacrocyclic complexes containing 2‐hydroxypropyl pendant groups, 1,1′,1′′,1′′′‐(1,4,8,11‐tetraazacyclotetradecane‐1,4,8,11‐tetrayl)tetrakis‐ (propan‐2‐ol) ([Co(L1)]2+, 1,1′‐(4,11‐dibenzyl‐1,4,8,11‐tetraazacyclotetradecane‐1,8‐diyl)bis(propan‐2‐ol) ([Co(L2)]2+), and 1,1′‐(4,11‐dibenzyl‐1,4,8,11‐tetraazacyclotetradecane‐1,8‐diyl)bis(octadecan‐2‐ol) ([Co(L3)]2+) were synthesized to prepare transition metal liposomal chemical exchange saturation transfer (lipoCEST) agents. In solution, ([Co(L1)]2+) forms two isomers as shown by1H NMR spectroscopy. X‐ray crystallographic studies show one isomer with 1,8‐pendants incis‐configuration and a second isomer with 1,4‐pendants intrans‐configuration. The [Co(L2)]2+complex has 1,8‐pendants in acis‐configuration. Remarkably, the paramagnetic‐induced shift of water1H NMR resonances in the presence of the [Co(L1)]2+complex is as large as that observed for one of the most effective LnIIIwater proton shift agents. Incorporation of [Co(L1)]2+into the liposome aqueous core, followed by dialysis against a solution of 300 mOsm L−1produces a CEST peak at 3.5 ppm. Incorporation of the amphiphilic [Co(L3)]2+complex into the liposome bilayer produces a more highly shifted CEST peak at −13 ppm. Taken together, these data demonstrate the feasibility of preparing CoIIlipoCEST agents.

     
    more » « less
  3. Abstract

    Three paramagnetic CoIImacrocyclic complexes containing 2‐hydroxypropyl pendant groups, 1,1′,1′′,1′′′‐(1,4,8,11‐tetraazacyclotetradecane‐1,4,8,11‐tetrayl)tetrakis‐ (propan‐2‐ol) ([Co(L1)]2+, 1,1′‐(4,11‐dibenzyl‐1,4,8,11‐tetraazacyclotetradecane‐1,8‐diyl)bis(propan‐2‐ol) ([Co(L2)]2+), and 1,1′‐(4,11‐dibenzyl‐1,4,8,11‐tetraazacyclotetradecane‐1,8‐diyl)bis(octadecan‐2‐ol) ([Co(L3)]2+) were synthesized to prepare transition metal liposomal chemical exchange saturation transfer (lipoCEST) agents. In solution, ([Co(L1)]2+) forms two isomers as shown by1H NMR spectroscopy. X‐ray crystallographic studies show one isomer with 1,8‐pendants incis‐configuration and a second isomer with 1,4‐pendants intrans‐configuration. The [Co(L2)]2+complex has 1,8‐pendants in acis‐configuration. Remarkably, the paramagnetic‐induced shift of water1H NMR resonances in the presence of the [Co(L1)]2+complex is as large as that observed for one of the most effective LnIIIwater proton shift agents. Incorporation of [Co(L1)]2+into the liposome aqueous core, followed by dialysis against a solution of 300 mOsm L−1produces a CEST peak at 3.5 ppm. Incorporation of the amphiphilic [Co(L3)]2+complex into the liposome bilayer produces a more highly shifted CEST peak at −13 ppm. Taken together, these data demonstrate the feasibility of preparing CoIIlipoCEST agents.

     
    more » « less
  4. Abstract

    The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave‐assisted reaction of citric acid and ethylenediamine was investigated by13C,13C{1H},1H─13C,13C{14N}, and15N solid‐state nuclear magnetic resonance (NMR) experiments.13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases.15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2at 155 ppm, and two distinctive15N NMR resonances near 80 and 160 ppm proved the presence of 5‐oxo‐1,2,3,5‐tetrahydroimidazo[1,2‐a]pyridine‐7‐carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross‐peaks in a1H─13C HETCOR spectrum with brief1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative13C and15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in13C chemical‐shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.

     
    more » « less
  5. In exploring the conformational behavior of cyclic tungsten bis-alkyne complexes, two dialkynylamides (14a and 14c) and two dialkynylesters (14b and 14d) derived from 1,1’-ferrocenedicarboxylic acid were prepared. They were subsequently reacted with W(CO)3(dmtc)2 to yield the desired cyclic tungsten bis-alkyne complexes 8-11. In the cyclization of 14a to yield 8 a dimeric macrocyclic complex, 15, featuring two tungsten bis-alkyne complexes in the ring, also was isolated. The conformational behavior of these complexes was assessed by analysis of the 1H NMR resonances for the alkyne hydrogens, which appear around 11 ppm. The spectra for complexes 10, 11 and 15 show multiple singlets of varying integrations for these protons, while the spectra for complexes 8 and 9 show only two resonances of equal integration for the alkyne hydrogens. The spectra for 8 and 9 changed very little when examined at higher temperatures, indicating that the solution conformation is robust. A ROESY spectrum was obtained for 8. It did not show any crosspeaks between the two alkyne hydrogens. The NMR data shows that the alkyne ligands in 10, 11 and 15 are able to rotate about the tungsten-alkyne bond; these complexes adopted several different solution conformations relating to syn and anti arrangements of the alkyne ligands. In contrast, complexes 8 and 9 adopt only one solution conformation, and the alkyne ligands in these species do not rotate about the tungsten-alkyne bond. The NMR spectra for 8 and 9 also show that these complexes are asymmetric. The 1H NMR spectra for 8 and 9 show that each hydrogen atom has its own unique resonance in the 1H NMR spectrum. There are 8 resonances for the 8 Cp protons, 4 resonances for the methylene protons, 2 resonances for the alkyne protons, and in the case of 8, 2 resonances for the NH protons. The two NH protons on complex 8 were found to have widely different chemical shifts. A DMSO titration was performed and it showed that one of the two NH protons in 8 is involved in an intramolecular hydrogen bond. Given that the diester 9 adopts a similar conformation as the diamide 8, this intramolecular hydrogen bond appears to result from the conformation imposed by cyclization of the ring system. Overall, the data show that the ring system for 8 and 9 provides a unique, rigid, robust, and air stable cyclic molecule where the alkyne ligands are limited to one orientation, presumably the syn orientation. The lack of mobility for the alkyne ligands limits the cyclic molecule to only one solution conformation. Complexes 8 and 9 are the first reported examples of cyclic tungsten bis-alkyne complexes that only adopt a single, robust conformation in solution. 
    more » « less