skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of lateral erosion in the evolution of nondendritic drainage networks to dendricity and the persistence of dynamic networks
Dendritic, i.e., tree-like, river networks are ubiquitous features on Earth’s landscapes; however, how and why river networks organize themselves into this form are incompletely understood. A branching pattern has been argued to be an optimal state. Therefore, we should expect models of river evolution to drastically reorganize (suboptimal) purely nondendritic networks into (more optimal) dendritic networks. To date, current physically based models of river basin evolution are incapable of achieving this result without substantial allogenic forcing. Here, we present a model that does indeed accomplish massive drainage reorganization. The key feature in our model is basin-wide lateral incision of bedrock channels. The addition of this submodel allows for channels to laterally migrate, which generates river capture events and drainage migration. An important factor in the model that dictates the rate and frequency of drainage network reorganization is the ratio of two parameters, the lateral and vertical rock erodibility constants. In addition, our model is unique from others because its simulations approach a dynamic steady state. At a dynamic steady state, drainage networks persistently reorganize instead of approaching a stable configuration. Our model results suggest that lateral bedrock incision processes can drive major drainage reorganization and explain apparent long-lived transience in landscapes on Earth.  more » « less
Award ID(s):
1833025
PAR ID:
10221459
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
16
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2015770118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For landscapes to achieve a topographic steady state, they require steady tectonic uplift and climate, and a bedrock that is uniformly erodible in the vertical direction. Basic landscape evolution models predict that incising drainage networks will eventually reach a static geometric equilibrium – that is, the map-view channel pattern will remain constant. In contrast, natural rivers typically incise through heterogeneous bedrock, which can force reorganization of the drainage structure. To investigate how lithological variability can force landscape reorganization, we draw inspiration from formerly glaciated portions of the upper Mississippi Valley. In this region, depth-to-bedrock maps reveal buried dendritic river networks dissecting paleozoic sedimentary rock. During the Pleistocene, ice advance buried the bedrock topography with glacial till, resurfacing the landscape and resetting the landscape evolution clock. As newly formed drainage networks develop and incise into the till-covered surface, they exhume the buried bedrock topography. This then leads to a geomorphic "decision point": Will the rivers follow the course of the bedrock paleodrainage network? Or will they maintain their new pattern? Using a numerical landscape evolution model, we find that two parameters determine this decision: (1) the contrast between the rock erodibility of the glacial till (more erodible) and of the buried sedimentary rock (less erodible) and (2) the orientation of the surface drainage network with respect to the buried network. We find that as the erodibility contrast increases, the drainage pattern is more likely to reorganize to follow the buried bedrock valleys. Additionally, as the alignment of the two networks increases, the surface drainage network also tends to restructure itself to follow the paleodrainage network. However, when there is less contrast and/or alignment, the surface drainage pattern becomes superimposed on the bedrock topography, with streams cutting across buried bedrock ridges. Our results agree with field studies demonstrating that variability in erodibility exerts a first-order control on landscape evolution and morphology. Our findings can provide insight into how lithologic variation affects surface processes, drives drainage reorganization, and creates geopatterns. 
    more » « less
  2. Earth's drainage networks encode clues that can be used to decipher geologic and geomorphic history. Dendritic drainage patterns, the most common, typically form on approximately homogeneous bedrock. Variations in rock properties or lithologic structure can disrupt dendritic patterns and form, e.g., trellis or rectangular networks. Although textbooks include such lithological–drainage links, the mechanisms driving drainage reorganization via lithologic variability remain poorly understood. To cast light on this mystery, we study drainage patterns in post-glacial landscapes of the Upper Mississippi River Valley (UMRV). Pleistocene glaciers deposited till across parts of this region, burying a landscape of fluvially dissected sedimentary rock whose buried valley network differs from modern-day drainage patterns. As the current river network erodes and exhumes the bedrock, it comes to a geomorphic "decision point": Does it reorganize to recreate the paleodrainage network, or does it maintain its new drainage pattern? To understand this decision-making, we conducted idealized landscape evolution modeling experiments. Modeled landscapes that reintegrated more of the paleodrainage network exhibited higher tortuosity, measured by dividing the real flowpath length by shortest path-length to the outlet, and obtuse tributary-junction angles. We apply this metric to two adjacent landscape types in the UMRV: (1) never glaciated (Driftless Area, DA) and (2) formerly till-mantled (Driftless-style Area, DSA), and measure the basin-averaged tortuosity for sub-basins draining streams of order 1 through 7. Across the UMRV, tortuosity increases as the maximum stream order of the sub-basin increases. For each order, tortuosity is statistically higher in areas that had been previously buried and re-exhumed (DSA) than the DA, indicating that the rivers in the DSA have reintegrated the paleodrainage network since deglaciation. For the 1st and 2nd order sub-basins, the mean basin-averaged tortuosity in the DSA is ~1-2% higher than the DA (p-value < 0.01) and ~10-14% higher (p-value < 0.01) in the 6th and 7th order sub-basins. Our analysis suggests that a drainage-based metric, tortuosity, can identify landscapes where lithological heterogeneity or structure plays a dominant role in drainage organization. 
    more » « less
  3. Abstract Bedrock rivers are the pacesetters of landscape evolution in uplifting fluvial landscapes. Water discharge variability and sediment transport are important factors influencing bedrock river processes. However, little work has focused on the sensitivity of hillslope sediment supply to precipitation events and its implications on river evolution in tectonically active landscapes. We model the temporal variability of water discharge and the sensitivity of sediment supply to precipitation events as rivers evolve to equilibrium over 106model years. We explore how coupling sediment supply sensitivity with discharge variability influences rates and timing of river incision across climate regimes. We find that sediment supply sensitivity strongly impacts which water discharge events are the most important in driving river incision and modulates channel morphology. High sediment supply sensitivity focuses sediment delivery into the largest river discharge events, decreasing rates of bedrock incision during floods by orders of magnitude as rivers are inundated with new sediment that buries bedrock. The results show that the use of river incision models in which incision rates increase monotonically with increasing river discharge may not accurately capture bedrock river dynamics in all landscapes, particularly in steep landslide prone landscapes. From our modeling results, we hypothesize the presence of an upper discharge threshold for river incision at which storms transition from being incisional to depositional. Our work illustrates that sediment supply sensitivity must be accounted for to predict river evolution in dynamic landscapes. Our results have important implications for interpreting and predicting climatic and tectonic controls on landscape morphology and evolution. 
    more » « less
  4. Abstract. Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on steep channel network form, it is first necessary to develop methods to estimate spatial variations in bulk debris flow properties (e.g., flow depth, velocity) throughout the channel network that can be integrated into landscape evolution models. Here, we propose and evaluate two methods to estimate spatial variations in bulk debris flow properties along the length of a channel profile. We incorporate both methods into a model designed to simulate the evolution of longitudinal channel profiles that evolve in response to debris flow and fluvial processes. To explore this model framework, we propose a general family of debris flow erosion laws where erosion rate is a function of debris flow depth and channel slope. Model results indicate that erosion by debris flows can explain the occurrence of a scaling break in the slope–area curve at low-drainage areas and that upper-network channel morphology may be useful for inferring catchment-averaged erosion rates in quasi-steady landscapes. Validating specific forms of a debris flow incision law, however, would require more detailed model–data comparisons in specific landscapes where input parameters and channel morphometry can be better constrained. Results improve our ability to interpret topographic signals within steep channel networks and identify observational targets critical for constraining a debris flow incision law. 
    more » « less
  5. Abstract Steep landscapes evolve largely by debris flows, in addition to fluvial and hillslope processes. Abundant field observations document that debris flows incise valley bottoms and transport substantial sediment volumes, yet their contributions to steepland morphology remain uncertain. This has, in turn, limited the development of debris‐flow incision rate formulations that produce morphology consistent with natural landscapes. In many landscapes, including the San Gabriel Mountains (SGM), California, steady‐state fluvial channel longitudinal profiles are concave‐up and exhibit a power‐law relationship between channel slope and drainage area. At low drainage areas, however, valley slopes become nearly constant. These topographic forms result in a characteristically curved slope‐area signature in log‐log space. Here, we use a one‐dimensional landform evolution model that incorporates debris‐flow erosion to reproduce the relationship between this curved slope‐area signature and erosion rate in the SGM. Topographic analysis indicates that the drainage area at which steepland valleys transition to fluvial channels correlates with measured erosion rates in the SGM, and our model results reproduce these relationships. Further, the model only produces realistic valley profiles when parameters that dictate the relationship between debris‐flow erosion, valley‐bottom slope, and debris‐flow depth are within a narrow range. This result helps place constraints on the mathematical form of a debris‐flow incision law. Finally, modeled fluvial incision outpaces debris‐flow erosion at drainage areas less than those at which valleys morphologically transition from near‐invariant slopes to concave profiles. This result emphasizes the critical role of debris‐flow incision for setting steepland form, even as fluvial incision becomes the dominant incisional process. 
    more » « less