skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resonance modes in moiré photonic patterns for twistoptics
Twistronics has been studied for manipulating electronic properties through a twist angle in the formed moiré superlattices of two dimensional layer materials. In this paper, we study twistoptics for manipulating optical properties in twisted moiré photonic patterns without physical rotations. We describe a theoretic approach for the formation of single-layer twisted photonic pattern in square and triangular lattices through an interference of two sets of laser beams arranged in two cone geometries. The moiré period and the size of unit super-cell of moiré patterns are related to the twist angle that is calculated from the wavevector ratio of laser beams. The bright and dark regions in moiré photonic pattern in triangular lattices are reversible. We simulate E-field intensities and their cavity quality factors for resonance modes in moiré photonic pattern in square lattices. Due to the bandgap dislocation between the bright and dark regions, the resonance modes with very high quality-factors appears near bandgap edges for the moiré photonic pattern with a twist angle of 9.5 degrees. At the low frequency range, the resonance modes can be explained as Mie resonances. The cavity quality factor decreases for resonance modes when the twist angle is increased to 22.6 degrees.  more » « less
Award ID(s):
1661842
PAR ID:
10221464
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
OSA Continuum
Volume:
4
Issue:
4
ISSN:
2578-7519
Format(s):
Medium: X Size: Article No. 1339
Size(s):
Article No. 1339
Sponsoring Org:
National Science Foundation
More Like this
  1. Twisted photonic crystals are photonic analogs of twisted monolayer materials such as graphene and their optical property studies are still in their infancy. This paper reports optical properties of twisted single-layer 2D+ moiré photonic crystals where there is a weak modulation in z direction, and bilayer moiré-overlapping-moiré photonic crystals. In weak-coupling bilayer moiré-overlapping-moiré photonic crystals, the light source is less localized with an increasing twist angle, similar to the results reported by the Harvard research group in References 37 and 38 on twisted bilayer photonic crystals, although there is a gradient pattern in the former case. In a strong-coupling case, however, the light source is tightly localized in AA-stacked region in bilayer PhCs with a large twist angle. For single-layer 2D+ moiré photonic crystals, the light source in Ex polarization can be localized and forms resonance modes when the single-layer 2D+ moiré photonic crystal is integrated on a glass substrate. This study leads to a potential application of 2D+ moiré photonic crystal in future on-chip optoelectronic integration. 
    more » « less
  2. A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures. 
    more » « less
  3. Abstract Moiré lattices formed in twisted van der Waals bilayers provide a unique, tunable platform to realize coupled electron or exciton lattices unavailable before. While twist angle between the bilayer has been shown to be a critical parameter in engineering the moiré potential and enabling novel phenomena in electronic moiré systems, a systematic experimental study as a function of twist angle is still missing. Here we show that not only are moiré excitons robust in bilayers of even large twist angles, but also properties of the moiré excitons are dependant on, and controllable by, the moiré reciprocal lattice period via twist-angle tuning. From the twist-angle dependence, we furthermore obtain the effective mass of the interlayer excitons and the electron inter-layer tunneling strength, which are difficult to measure experimentally otherwise. These findings pave the way for understanding and engineering rich moiré-lattice induced phenomena in angle-twisted semiconductor van der Waals heterostructures. 
    more » « less
  4. Abstract The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat‐band superconductivity in twisted graphene bilayers, of higher‐order topological phases in twisted moiré superlattices, and of topological polaritons in twisted hyperbolic metasurfaces. These discoveries, at the foundations of the emergent field of twistronics, have so far been mostly limited to explorations in atomically thin condensed matter and photonic systems, with limitations on the degree of control over geometry and twist angle, and inherent challenges in the fabrication of carefully engineered stacked multilayers. Here, this work extends twistronics to widely reconfigurable macroscopic elastic metasurfaces consisting of LEGO pillar resonators. This work demonstrates highly tailored anisotropy over a single‐layer metasurface driven by variations in the twist angle between a pair of interleaved spatially modulated pillar lattices. The resulting quasi‐periodic moiré patterns support topological transitions in the isofrequency contours, leading to strong tunability of highly directional waves. The findings illustrate how the rich phenomena enabled by twistronics and moiré physics can be translated over a single‐layer metasurface platform, introducing a practical route toward the observation of extreme phenomena in a variety of wave systems, potentially applicable to both quantum and classical settings without multilayered fabrication requirements. 
    more » « less
  5. Abstract The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics. 
    more » « less