Abstract Modulatory mechanisms of neurotransmitter release and clearance are highly controlled processes whose finely tuned regulation is critical for functioning of the nervous system. Dysregulation of the monoamine neurotransmitter dopamine can lead to several neuropathies. Synaptic modulation of dopamine is known to involve pre‐synaptic D2 auto‐receptors and acid sensing ion channels. In addition, the dopamine membrane transporter (DAT), which is responsible for clearance of dopamine from the synaptic cleft, is suspected to play an active role in modulating release of dopamine. Using functional imaging on theCaenorhabditis elegansmodel system, we show that DAT‐1 acts as a negative feedback modulator to neurotransmitter vesicle fusion. Results from our fluorescence recovery after photo‐bleaching (FRAP) based experiments were followed up with and reaffirmed using swimming‐induced paralysis behavioral assays. Utilizing our numerical FRAP data we have developed a mechanistic model to dissect the dynamics of synaptic vesicle fusion, and compare the feedback effects of DAT‐1 with the dopamine auto‐receptor. Our experimental results and the mechanistic model are of potential broader significance, as similar dynamics are likely to be used by other synaptic modulators including membrane transporters for other neurotransmitters across species.
more »
« less
Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
more »
« less
- PAR ID:
- 10221538
- Date Published:
- Journal Name:
- Frontiers in Cellular Neuroscience
- Volume:
- 15
- ISSN:
- 1662-5102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Removing glutamate from the synaptic cleft is vital for proper function of the brain. Excitatory amino acid transporters mediate this process by uptaking the neurotransmitter from the synaptic cleft back to the cell after its release. The archaeal homolog, GltPh, an aspartate transporter fromPyrococcus horikoshii, presents the best structurally characterized model for this family of transporters. In order to transport, GltPhundergoes elevator-like conformational changes between inward-facing (IF) and outward-facing (OF) states. Here, we characterize, at an atomic level, the OF⇌IF transition of GltPhin differentapo/bound states using a combination of ensemble-based enhanced sampling techniques, employing more than two thousand of coupled simulation replicas of membrane-embedded GltPh. The resulting free-energy profiles portray the transition ofapo/bound states as a complex four-stage process, while sodium binding alone locks the structure in one of its states. Along the transition, the transport domain (TD) disengages from the scaffold domain (SD), allowing it to move as a piston sliding vertically with respect to the membrane during the elevator-like motion of TD. Lipid interactions with residues comprising the SD–TD interface directly influence the large-scale conformational changes and, consequently, the energetics of transport. Structural intermediates formed during the transition leak water molecules and may correlate to the uncoupled Cl−ion conductance observed experimentally in both prokaryotic and mammalian glutamate transporters. Mechanistic insights obtained from our study provide a structural framework for better development of therapeutic for neurological disorders.more » « less
-
The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.more » « less
-
Abstract Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 μm, can detect real‐time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.more » « less
-
Membrane transporters of the solute carrier 6 (SLC6) family mediate various physiological processes by facilitating the translocation of amino acids, neurotransmitters, and other metabolites. In the body, the activity of these transporters is tightly controlled through various post-translational modifications with implications on protein expression, stability, membrane trafficking, and dynamics. While N-linked glycosylation is a universal regulatory mechanism among eukaryotes, a consistent mechanism of how glycosylation affects the SLC6 transporter family remains elusive. It is generally believed that glycans influence transporter stability and membrane trafficking; however, the role of glycosylation on transporter dynamics remains disputable, with differing conclusions among individual transporters across the SLC6 family. In this study, we collected over 1 ms of aggregated all-atom molecular dynamics (MD) simulation data to systematically identify the impact of N-glycans on SLC6 transporter dynamics. We modeled four human SLC6 transporters, the serotonin, dopamine, glycine, and B0AT1 transporters, by first simulating all possible combinations of a glycan attached to each glycosylation site followed by investigating the effect of larger, oligo-N-linked glycans to each transporter. The simulations reveal that glycosylation does not significantly affect the transporter structure but alters the dynamics of the glycosylated extracellular loop and surrounding regions. The structural consequences of glycosylation on the loop dynamics are further emphasized with larger glycan molecules attached. However, no apparent differences in ligand stability or movement of the gating helices were observed, and as such, the simulations suggest that glycosylation does not have a profound effect on conformational dynamics associated with substrate transport.more » « less
An official website of the United States government

