Abstract We present results and analysis of finite‐difference time‐domain (FDTD) simulations of electromagnetic waves scattering off meteor head plasma using an analytical model and a simulation‐derived model of the head plasma distribution. The analytical model was developed by (Dimant & Oppenheim, 2017b,https://doi.org/10.1002/2017JA023963) and the simulation‐derived model is based on particle‐in‐cell (PIC) simulations presented in (Sugar et al., 2019,https://doi.org/10.1029/2018JA026434). Both of these head plasma distribution models show the meteor head plasma is significantly different than the spherically symmetric distributions used in previous studies of meteor head plasma. We use the FDTD simulation results to fit a power law model that relates the meteoroid ablation rate to the head echo radar cross section (RCS), and show that the RCS of plasma distributions derived from the Dimant‐Oppenheim analytical model and the PIC simulations agree to within 4 dBsm. The power law model yields more accurate meteoroid mass estimates than previous methods based on spherically symmetric plasma distributions.
more »
« less
Numerical Simulation of Plasma Interfaces Using the Starfish Plasma Simulation Code
A particular challenge for low temperature plasma (LTP) research is the diversity of parameter space and conditions. For plasma systems where the densities are not low, the kinetic theory is time-consuming and becomes unrealistic. In this regime, the particle-in-Cell (PIC) method is appropriate where the evolution of a particle system at every time step consists of an Eulerian stage and a Lagrangian stage. The PIC method can deal with complex geometries and large distortions in the field. The PIC solver, Starfish, is a two-dimensional plasma and gas simulation code operating on structured 2D/axisymmetric Cartesian or body fitted stretched meshes. The purpose of this study is to use the Starfish Plasma Simulation Code for numerical simulations of plasma interfaces. Specifically, two applications are considered: 1) the modeling of a large area (30 cm x 30 cm) microwave plasma chemical vapor deposition system, and 2) the understanding of LTP treatment on surface modification of polycaprolactone pellets and thermal properties of extruded filaments. With the exact geometries and experimental results being provided, numerical simulations of these two applications are ongoing.
more »
« less
- Award ID(s):
- 1655280
- PAR ID:
- 10221582
- Date Published:
- Journal Name:
- AiAA Aviation Forum 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe a systematic development of kinetic entropy as a diagnostic in fully kinetic particle-in-cell (PIC) simulations and use it to interpret plasma physics processes in heliospheric, planetary, and astrophysical systems. First, we calculate kinetic entropy in two forms – the “combinatorial” form related to the logarithm of the number of microstates per macrostate and the “continuous” form related to f ln f, where f is the particle distribution function. We discuss the advantages and disadvantages of each and discuss subtleties about implementing them in PIC codes. Using collisionless PIC simulations that are two-dimensional in position space and three-dimensional in velocity space, we verify the implementation of the kinetic entropy diagnostics and discuss how to optimize numerical parameters to ensure accurate results. We show the total kinetic entropy is conserved to three percent in an optimized simulation of anti-parallel magnetic reconnection. Kinetic entropy can be decomposed into a sum of a position space entropy and a velocity space entropy, and we use this to investigate the nature of kinetic entropy transport during collisionless reconnection. We find the velocity space entropy of both electrons and ions increases in time due to plasma heating during magnetic reconnection, while the position space entropy decreases due to plasma compression. This project uses collisionless simulations, so it cannot address physical dissipation mechanisms; nonetheless, the infrastructure developed here should be useful for studies of collisional or weakly collisional heliospheric, planetary, and astrophysical systems. Beyond reconnection, the diagnostic is expected to be applicable to plasmamore » « less
-
Abstract During magnetospheric substorms, plasma from magnetic reconnection in the magnetotail is thought to reach the inner magnetosphere and form a partial ring current. We simulate this process using a fully kinetic 3D particle‐in‐cell (PIC) numerical code along with a global magnetohydrodynamics (MHD) model. The PIC simulation extends from the solar wind outside the bow shock to beyond the reconnection region in the tail, while the MHD code extends much further and is run for nominal solar wind parameters and a southward interplanetary magnetic field. By the end of the PIC calculation, ions and electrons from the tail reconnection reach the inner magnetosphere and form a partial ring current and diamagnetic current. The primary source of particles to the inner magnetosphere is bursty bulk flows (BBFs) that originate from a complex pattern of reconnection in the near‐Earth magnetotail at to . Most ion acceleration occurs in this region, gaining from 10 to 50 keV as they traverse the sites of active reconnection. Electrons jet away from the reconnection region much faster than the ions, setting up an ambipolar electric field allowing the ions to catch up after approximately 10 ion inertial lengths. The initial energy flux in the BBFs is mainly kinetic energy flux from the ions, but as they move earthward, the energy flux changes to enthalpy flux at the ring current. The power delivered from the tail reconnection in the simulation to the inner magnetosphere is W, which is consistent with observations.more » « less
-
The quality of electron beams produced from plasma-based accelerators, i.e., normalized brightness and energy spread, has made transformative progress in the past several decades in both simulation and experiment. Recently, full-scale particle-in-cell (PIC) simulations have shown that electron beams with unprecedented brightness (1020–1021 A=m2=rad2) and 0.1–1 MeVenergy spread can be produced through controlled injection in a slowly expanding bubble that arises when a particle beam or laser pulse propagates in density gradient, or when a particle beam self-focuses in uniform plasma or has a superluminal flying focus. However, in previous simulations of work on self-injection triggered by an evolving laser driver in a uniform plasma, the resulting beams did not exhibit comparable brightnesses and energy spreads. Here, we demonstrate through the use of large-scale high-fidelity PIC simulations that a slowly expanding bubble driven by a laser pulse in a uniform plasma can indeed produce self-injected electron beams with similar brightness and energy spreads as for an evolving bubble driven by an electron beam driver. We consider laser spot sizes roughly equal to the matched spot sizes in a uniform plasma and find that the evolution of the bubble occurs naturally through the evolution of the laser. The effects of the electron beam quality on the choice of physical as well as numerical parameters, e.g., grid sizes and field solvers used in the PIC simulations are presented. It is found that this original and simplest injection scheme can produce electron beams with beam quality exceeding that of the more recent concepts.more » « less
-
The possibility of fueling a magnetically confined plasma using particle sources located inside of the plasma is studied by computer simulation. Magnetic plasma expulsion [R. E. Phillips and C. A. Ordonez, Phys. Plasmas 25, 012508 (2018)] would serve to keep the magnetically confined plasma away from the particle sources without adversely affecting plasma confinement. The simulations show how charged particles can be injected into a plasma by using particle sources located directly between two current-carrying wires that create a magnetic expulsion field. Plasma fueling with the average energy of injected particles greater than the average energy of plasma particles may serve for heating the plasma. Also, plasma fueling with positive and negative particles injected at different rates may serve for changing the neutrality of the plasma. Conditions for plasma fueling are investigated using a classical trajectory Monte Carlo simulation. Two types of particle sources are considered, and the fraction of emitted particles that reach (and fuel) the magnetically confined plasma is evaluated for each.more » « less
An official website of the United States government

