skip to main content


Title: Long‐term nutrient enrichment, mowing, and ditch drainage interact in the dynamics of a wetland plant community
Abstract

Fertilization studies have elucidated basic principles of the role of nutrients in shaping plant communities and demonstrated the potential effects of anthropogenic nutrient deposition. Yet less is known about how these effects are mediated by interacting ecological factors, particularly in nutrient‐poor wetland habitats. In a long‐term experiment in a coastal plain wetland, we examined how fertilization and mowing affected the diversity and composition of a plant community as it reestablished after major disturbance. A drainage ditch in proximity to the experimental plots allowed us also to consider the influence of hydrology and its interactions with nutrient addition. Fertilization decreased species richness, with wetland specialist species showing especially great losses, and several lines of evidence suggest that the effect was mediated by competition for light. Altered hydrology via ditch drainage had effects that were similar to fertilization, with more rapidly draining plots showing lower diversity and decreased abundance of wetland species. Plant community diversity and dynamics were influenced by complex interactions between fertilization, disturbance, and hydrology. The negative effect of fertilization on species richness was initially mitigated by mowing, but in later years was more evident in mowed than in unmowed plots. In the absence of disturbance, nutrient addition increased the rate of transition to primarily woody communities. Similarly, drained plots experienced increased rates of succession compared to wetter plots. Our results suggest that these interactions need to be considered to understand the potential effects of anthropogenic nutrient addition and hydrologic alterations to wetland ecosystems.

 
more » « less
Award ID(s):
1845845
NSF-PAR ID:
10455074
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
11
Issue:
10
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter decomposition. However, interacting effects of hydrologic position and associated changes to soil moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial community structure–function relationships. Examining feedbacks of nutrient enrichment on decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as atmospheric deposition of nutrients persists. This study explored how long‐term nutrient addition and contrasting litter chemical composition influenced soil bacterial community structure and function. We hypothesized that long‐term nutrient enrichment of low fertility soils alters bacterial community structure and leads to higher rates of litter decomposition especially for low C:N litter, but low‐nutrient and dry conditions limit microbial decomposition of high C:N ratio litter. We leveraged a long‐term fertilization experiment to test how nutrient enrichment and hydrologic manipulation (due to ditches) affected decomposition and soil bacterial community structure in a nutrient‐poor coastal plain wetland. We conducted a litter bag experiment and characterized litter‐associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter mass losses and soil physicochemical properties. Results revealed that distinct bacterial communities were involved in decomposing higher C:N ratio litter more quickly in fertilized compared to unfertilized soils especially under drier soil conditions, while decomposition rates of lower C:N ratio litter were similar between fertilized and unfertilized plots. Bacterial community structure in part explained litter decomposition rates, and long‐term fertilization and drier hydrologic status affected bacterial diversity and increased decomposition rates. However, community composition associated with high C:N litter was similar in wetter plots with available nitrate detected, regardless of fertilization treatment. This study provides insight into long‐term fertilization effects on soil bacterial diversity and composition, decomposition, and the increased potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low‐nutrient ecosystems.

     
    more » « less
  2. Abstract

    The plant microbiome can affect host function in many ways and characterizing the ecological factors that shape endophytic (microbes living inside host plant tissues) community diversity is a key step in understanding the impacts of environmental change on these communities. Phylogenetic relatedness among members of a community offers a way of quantifying phylogenetic diversity of a community and can provide insight into the ecological factors that shape endophyte microbiomes. We examined the effects of experimental nutrient addition and herbivory exclusion on the phylogenetic diversity of foliar fungal endophyte communities of the grass speciesAndropogon gerardiiat four sites in the Great Plains of the central USA. Using amplicon sequencing, we characterized the effects of fertilization and herbivory on fungal community phylogenetic diversity at spatial scales that spanned within‐host to between sites across the Great Plains. Despite increasing fungal diversity and richness, at larger spatial scales, fungal microbiomes were composed of taxa showing random phylogenetic associations. Phylogenetic diversity did not differ systematically when summed across increasing spatial scales from a few meters within plots to hundreds of kilometers among sites. We observed substantial shifts in composition across sites, demonstrating distinct but similarly diverse fungal communities were maintained within sites across the region. In contrast, at the scale of within leaves, fungal communities tended to be comprised of closely related taxa regardless of the environment, but there were no shifts in phylogenetic composition among communities. We also found that nutrient addition (fertilization) and herbivory have varying effects at different sites. These results suggest that the direction and magnitude of the outcomes of environmental modifications likely depend on the spatial scale considered, and can also be constrained by regional site differences in microbial diversity and composition.

     
    more » « less
  3. Campbell, Barbara J. (Ed.)
    ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways. 
    more » « less
  4. Abstract

    Understanding how abiotic disturbance and biotic interactions determine pollinator and flowering‐plant diversity is critically important given global climate change and widespread pollinator declines. To predict responses of pollinators and flowering‐plant communities to changes in wildfire disturbance, a mechanistic understanding of how these two trophic levels respond to wildfire severity is needed.

    We compared site‐to‐site variation in community composition (β‐diversity), species richness and abundances of pollinators and flowering plants among landscapes with no recent wildfire (unburned), mixed‐severity wildfire and high‐severity wildfire in three sites across the Northern Rockies Ecoregion, USA. We used variation partitioning to assess the relative contributions of wildfire, other abiotic variables (climate, soils and topography) and biotic associations among plant and pollinator composition to community assembly of both trophic levels.

    Wildfire disturbance generally increased species richness and total abundance, but decreasedβ‐diversity, of both pollinators and flowering plants. However, reductions inβ‐diversity from wildfire appeared to result from increased abundances following fires, resulting in higher local species richness of pollinators and flowers in burned than unburned landscapes. After accounting for differences in abundance, standardized effect sizes ofβ‐diversity were higher in burned than unburned landscapes, suggesting that wildfire enhances non‐random assortment of pollinator and flowering‐plant species among local communities.

    Wildfire disturbance mediated the relative importance of mutualistic associations toβ‐diversity of pollinators and flowering plants. The influence of pollinatorβ‐diversity on flowering‐plantβ‐diversity increased with wildfire severity, whereas the influence of flowering‐plantβ‐diversity on pollinatorβ‐diversity was greater in mixed‐severity than high‐severity wildfire or unburned landscapes. Moreover, biotic associations among pollinator and plant species explained substantial variation inβ‐diversity of both trophic levels beyond what could be explained by wildfire and all other abiotic and spatial factors combined.

    Synthesis. Wildfire disturbance and plant–pollinator interactions both strongly influenced the assembly of pollinator and flowering‐plant communities at local and regional scales. However, biotic interactions were generally more important drivers of community assembly in disturbed than undisturbed landscapes. As wildfire regimes continue to change globally, predicting its effects on biodiversity will require a deeper understanding of the ecological processes that mediate biotic interactions among linked trophic levels.

     
    more » « less
  5. Abstract Aims

    The productivity–plant diversity relationship is a central subject in ecology under debate for decades. Anthropogenic disturbances have been demonstrated to affect productivity and plant diversity. However, the impact of disturbances on the productivity–diversity relationship is poorly understood.

    Location

    An old‐field located at the Touch of Nature Environmental Center in Jackson County, Illinois, USA.

    Methods

    A manipulative experiment with fertilizer (unfertilized, fertilized annually, fertilized every five years) and mowing (unmowed, mowed in spring only, mowed in spring and fall) in a successional old‐field began in 1996 to examine disturbance effects on above‐ground net primary productivity (ANPP)–plant diversity relationships. Taxonomic (species richness, T0) and phylogenetic (net relatedness index, NRI) diversity were selected as potential plant diversity metrics.

    Results

    A unimodal relationship of ANPP with T0 and a negative relationship between ANPP and NRI were found across all treatments and years in this study, but individual years showed different patterns. Fertilization did not affect T0, NRI, and ANPP, whereas mowing stimulated T0 and ANPP but reduced NRI (i.e., increasing phylogenetic diversity) across all survey years. New colonists, especially exotic species introduced under mowing, but not locally extinct species, were more distantly related to resident species than by chance, implying that invasion of exotic species contributes to phylogenetic overdispersion of community assembly in the old‐field. However, the patterns of the unimodal relationship of ANPP with T0 and the negative correlation between ANPP and NRI did not change under fertilization or mowing in this study.

    Conclusions

    Anthropogenic disturbances alter productivity and different dimensions of plant diversity, but do not change the patterns of the productivity–diversity relationships. Our findings highlight the robust relationship between productivity and diversity providing empirical support for productivity as a powerful predictor of plant diversity under intensified human activities.

     
    more » « less