skip to main content


Title: Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis
Abstract

Arylation of carbonyls, one of the most common approaches toward alcohols, has received tremendous attention, as alcohols are important feedstocks and building blocks in organic synthesis. Despite great progress, there is still a great gap to develop an ideal arylation method featuring mild conditions, good functional group tolerance, and readily available starting materials. We now show that electrochemical arylation can fill the gap. By taking advantage of synthetic electrochemistry, commercially available aldehydes (ketones) and benzylic alcohols can be readily arylated to provide a general and scalable access to structurally diverse alcohols (97 examples, >10 gram‐scale). More importantly, convergent paired electrolysis, the ideal but challenging electrochemical technology, was employed to transform low‐value alcohols into more useful alcohols. Detailed mechanism study suggests that two plausible pathways are involved in the redox neutral α‐arylation of benzylic alcohols.

 
more » « less
NSF-PAR ID:
10221819
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
13
ISSN:
1433-7851
Page Range / eLocation ID:
p. 7275-7282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arylation of carbonyls, one of the most common approaches toward alcohols, has received tremendous attention, as alcohols are important feedstocks and building blocks in organic synthesis. Despite great progress, there is still a great gap to develop an ideal arylation method featuring mild conditions, good functional group tolerance, and readily available starting materials. We now show that electrochemical arylation can fill the gap. By taking advantage of synthetic electrochemistry, commercially available aldehydes (ketones) and benzylic alcohols can be readily arylated to provide a general and scalable access to structurally diverse alcohols (97 examples, >10 gram‐scale). More importantly, convergent paired electrolysis, the ideal but challenging electrochemical technology, was employed to transform low‐value alcohols into more useful alcohols. Detailed mechanism study suggests that two plausible pathways are involved in the redox neutral α‐arylation of benzylic alcohols.

     
    more » « less
  2. Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert -butylation of electron-rich arenes using di- tert -butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel–Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel–Crafts reactivity. 
    more » « less
  3. Abstract

    Four glycolated polythiophene‐based organic mixed ionic‐electronic conductors (OMIECs), PE2gTT, PE2gT, PT2gTT, and PT2gT are prepared by atom‐efficient direct arylation polymerization, avoiding the need for toxic organometallic precursors. PE2gT, PT2gTT, and PT2gT are operable in p‐type accumulation mode organic electrochemical transistors (OECTs), with PT2gT displaying the best device performance with a µC*product figure‐of‐merit of 290 F cm−1 V−1 s−1. A record volumetric capacitance among p‐type glycolated polythiophene OMIECs of 313 F cm−3is observed forPE2gT, ascribed to the high proportionality of polar components in its materials design. The good OECT performance ofPE2gTwith µC*= 84.2 F cm−1 V−1 s−1, comparable with state‐of‐the‐art poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) devices, coupled with its synthetic accessibility and favorable accumulation mode operation makesPE2gTan ideal glycolated alternative to PEDOT:PSS in bioelectronics.PE2gTwith the least negative threshold voltage also displays the best OECT operational cycling stability, linked to better resistance of its oxidized state against parasitic redox side reactions . Shelf life stability of OECTs stored (without bias) is observed to be better for materials with a more negative threshold voltage and higher average molecular weight (PT2gT), that are less susceptible to ambient auto‐oxidation and film delamination.

     
    more » « less
  4. Abstract

    Direct oxidative C(sp)−H/C(sp3)−H cross‐coupling offers an ideal and environmentally benign protocol for C(sp)−C(sp3) bond formations. As such, reactivity and site‐selectivity with respect to C(sp3)−H bond cleavage have remained a persistent challenge. Herein is reported a simple method for iron‐catalyzed/silver‐mediated tertiary alkylation of terminal alkynes with readily available and versatile 1,3‐dicarbonyl compounds. The reaction is suitable for an array of substrates and proceeds in a highly selective manner even employing alkanes containing other tertiary, benzylic, and C(sp3)−H bonds alpha to heteroatoms. Elaboration of the products enables the synthesis of a series of versatile building blocks. Control experiments implicate the in situ generation of a tertiary carbon‐centered radical species.

     
    more » « less
  5. Abstract

    Direct oxidative C(sp)−H/C(sp3)−H cross‐coupling offers an ideal and environmentally benign protocol for C(sp)−C(sp3) bond formations. As such, reactivity and site‐selectivity with respect to C(sp3)−H bond cleavage have remained a persistent challenge. Herein is reported a simple method for iron‐catalyzed/silver‐mediated tertiary alkylation of terminal alkynes with readily available and versatile 1,3‐dicarbonyl compounds. The reaction is suitable for an array of substrates and proceeds in a highly selective manner even employing alkanes containing other tertiary, benzylic, and C(sp3)−H bonds alpha to heteroatoms. Elaboration of the products enables the synthesis of a series of versatile building blocks. Control experiments implicate the in situ generation of a tertiary carbon‐centered radical species.

     
    more » « less