skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning Human Rights and Wrongs: How the Successes and Failures of Supervised Learning Algorithms Can Inform the Debate About Information Effects
There is an ongoing debate about whether human rights standards have changed over the last 30 years. The evidence for or against this shift relies upon indicators created by human coders reading the texts of human rights reports. To help resolve this debate, we suggest translating the question of changing standards into a supervised learning problem. From this perspective, the application of consistent standards over time implies a time-constant mapping from the textual features in reports to the human coded scores. Alternatively, if the meaning of abuses have evolved over time, then the same textual features will be labeled with different numerical scores at distinct times. Of course, while the mapping from natural language to numerical human rights score is a highly complicated function, we show that these two distinct data generation processes imply divergent overall patterns of accuracy when we train a wide variety of algorithms on older versus newer sets of observations to learn how to automatically label texts with scores. Our results are consistent with the expectation that standards of human rights have changed over time.  more » « less
Award ID(s):
1753528
PAR ID:
10221832
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Political Analysis
Volume:
27
Issue:
2
ISSN:
1047-1987
Page Range / eLocation ID:
223 to 230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This manuscript helps to resolve the ongoing debate concerning the effect of information communication technology on human rights monitoring. We reconceptualize human rights as a taxonomy of nested rights that are judged in textual reports and argue that the increasing density of available information should manifest in deeper taxonomies of human rights. With a new automated system, using supervised learning algorithms, we are able to extract the implicit taxonomies of rights that were judged in texts by the US State Department, Amnesty International, and Human Rights Watch over time. Our analysis provides new, clear evidence of change in the structure of these taxonomies as well as in the attention to specific rights and the sharpness of distinctions between rights. Our findings bridge the natural language processing and human rights communities and allow a deeper understanding of how changes in technology have affected the recording of human rights over time. 
    more » « less
  2. Recently, there have been significant advances and wide-scale use of generative AI in natural language generation. Models such as OpenAI’s GPT3 and Meta’s LLaMA are widely used in chatbots, to summarize documents, and to generate creative content. These advances raise concerns about abuses of these models, especially in social media settings, such as large-scale generation of disinformation, manipulation campaigns that use AI-generated content, and personalized scams. We used stylometry (the analysis of style in natural language text) to analyze the style of AI-generated text. Specifically, we applied an existing authorship verification (AV) model that can predict if two documents are written by the same author on texts generated by GPT2, GPT3, ChatGPT and LLaMA. Our AV model was trained only on human-written text and was effectively used in social media settings to analyze cases of abuse. We generated texts by providing the language models with fanfiction snippets and prompting them to complete the rest of it in the same writing style as the original snippet. We then applied the AV model across the texts generated by the language models and the human written texts to analyze the similarity of the writing styles between these texts. We found that texts generated with GPT2 had the highest similarity to the human texts. Texts generated by GPT3 and ChatGPT were very different from the human snippet, and were similar to each other. LLaMA-generated texts had some similarity to the original snippet but also has similarities with other LLaMA-generated texts and texts from other models. We then conducted a feature analysis to identify the features that drive these similarity scores. This analysis helped us answer questions like which features distinguish the language style of language models and humans, which features are different across different models, and how these linguistic features change over different language model versions. The dataset and the source code used in this analysis have been made public to allow for further analysis of new language models. 
    more » « less
  3. Education researchers have proposed that qualitative and emerging computational machine learning (ML) approaches can be productively combined to advance analyses of student-generated artifacts for evidence of engagement in scientific practices. We applied such a combined approach to written arguments excerpted from university students’ biology laboratory reports. These texts are lengthy and contain multiple different features that could be attended to in analysis. We present two outcomes of this combined analysis that illustrate possible affordances of combined workflows: 1) Comparing ML and human-generated scores allowed us to identify and reanalyze mismatches, increasing our overall confidence in the coding; and 2) ML-identified word clusters allowed us to interpret the overlap in meaning between the original coding scheme and the ML predicted scores, providing insight into which features of students’ writing can be used to differentiate rote from more meaningful engagement in scientific argumentation. 
    more » « less
  4. Abstract Nearly every artifact of the modern engineering design process is digitally recorded and stored, resulting in an overwhelming amount of raw data detailing past designs. Analyzing this design knowledge and extracting functional information from sets of digital documents is a difficult and time-consuming task for human designers. For the case of textual documentation, poorly written superfluous descriptions filled with jargon are especially challenging for junior designers with less domain expertise to read. If the task of reading documents to extract functional requirements could be automated, designers could actually benefit from the distillation of massive digital repositories of design documentation into valuable information that can inform engineering design. This paper presents a system for automating the extraction of structured functional requirements from textual design documents by applying state of the art Natural Language Processing (NLP) models. A recursive method utilizing Machine Learning-based question-answering is developed to process design texts by initially identifying the highest-level functional requirement, and subsequently extracting additional requirements contained in the text passage. The efficacy of this system is evaluated by comparing the Machine Learning-based results with a study of 75 human designers performing the same design document analysis task on technical texts from the field of Microelectromechanical Systems (MEMS). The prospect of deploying such a system on the sum of all digital engineering documents suggests a future where design failures are less likely to be repeated and past successes may be consistently used to forward innovation. 
    more » « less
  5. Language-guided smart systems can help to design next-generation human-machine interactive applications. The dense text description is one of the research areas where systems learn the semantic knowledge and visual features of each video frame and map them to describe the video's most relevant subjects and events. In this paper, we consider untrimmed sports videos as our case study. Generating dense descriptions in the sports domain to supplement journalistic works without relying on commentators and experts requires more investigation. Motivated by this, we propose an end-to-end automated text-generator, SpecTextor, that learns the semantic features from untrimmed videos of sports games and generates associated descriptive texts. The proposed approach considers the video as a sequence of frames and sequentially generates words. After splitting videos into frames, we use a pre-trained VGG-16 model for feature extraction and encoding the video frames. With these encoded frames, we posit a Long Short-Term Memory (LSTM) based attention-decoder pipeline that leverages soft-attention mechanism to map the semantic features with relevant textual descriptions to generate the explanation of the game. Because developing a comprehensive description of the game warrants training on a set of dense time-stamped captions, we leverage two available public datasets: ActivityNet Captions and Microsoft Video Description. In addition, we utilized two different decoding algorithms: beam search and greedy search and computed two evaluation metrics: BLEU and METEOR scores. 
    more » « less