skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine learning model and strategy for fast and accurate detection of leaks in water supply network
Abstract The water supply network (WSN) is subjected to leaks that compromise its service to the communities, which, however, is challenging to identify with conventional approaches before the consequences surface. This study developed Machine Learning (ML) models to detect leaks in the WDN. Water pressure data under leaking versus non-leaking conditions were generated with holistic WSN simulation code EPANET considering factors such as the fluctuating user demands, data noise, and the extent of leaks, etc. The results indicate that Artificial Neural Network (ANN), a supervised ML model, can accurately classify leaking versus non-leaking conditions; it, however, requires balanced dataset under both leaking and non-leaking conditions, which is difficult for a real WSN that mostly operate under normal service condition. Autoencoder neural network (AE), an unsupervised ML model, is further developed to detect leak with unbalanced data. The results show AE ML model achieved high accuracy when leaks occur in pipes inside the sensor monitoring area, while the accuracy is compromised otherwise. This observation will provide guidelines to deploy monitoring sensors to cover the desired monitoring area. A novel strategy is proposed based on multiple independent detection attempts to further increase the reliability of leak detection by the AE and is found to significantly reduce the probability of false alarm. The trained AE model and leak detection strategy is further tested on a testbed WSN and achieved promising results. The ML model and leak detection strategy can be readily deployed for in-service WSNs using data obtained with internet-of-things (IoTs) technologies such as smart meters.  more » « less
Award ID(s):
1638320
PAR ID:
10221965
Author(s) / Creator(s):
; ;  
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Infrastructure Preservation and Resilience
Volume:
2
Issue:
1
ISSN:
2662-2521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While Volatile Organic Compounds (VOC) and ammonia have a place in our daily lives, their leakage into the environment is harmful to human health. In order to prevent and detect gaseous leaks of harmful VOCs, a cyber-physical system (CPS) comprised of ordinary people or first responders is proposed. This CPS uses small, low-cost sensors coupled to smart phones or mobile devices with the necessary computation and communication capabilities. The efficacy of such a CPS hinges on its ability to address technical challenges stemming from the fact that identically produced sensors may produce different results under the same conditions due to sensor drift, noise, or resolution errors. The proposed system makes use of time-varying signals produced by sensors to detect gas leaks. Sensors sample the gas vapor level in a continuous manner and time-varying sensor data is processed using deep neural networks. One of the neural networks (NN) is an energy efficient Additive Neural Network (AddNet) which can be implemented in host devices. The second NN is the discriminator of a GAN and the third a regular convolutional NN. AddNet produces comparable VOC gas leak detection results to regular convolutional networks while reducing area requirements by two thirds. 
    more » « less
  2. Water distribution systems (WDSs) face a significant challenge in the form of pipe leaks. Pipe leaks can cause loss of a large amount of treated water, leading to pressure loss, increased energy costs, and contamination risks. Locating pipe leaks has been a constant challenge for water utilities and stakeholders due to the underground location of the pipes. Physical methods to detect leaks are expensive, intrusive, and heavily localized. Computational approaches provide an economical alternative to physical methods. Data-driven machine learning-based computational approaches have garnered growing interest in recent years to address the challenge of detecting pipe leaks in WDSs. While several studies have applied machine learning models for leak detection on single pipes and small test networks, their applicability to the real-world WDSs is unclear. Most of these studies simplify the leak characteristics and ignore modeling and measuring device uncertainties, which makes the scalability of their approaches questionable to real-world WDSs. Our study addresses this issue by devising four study cases that account for the realistic leak characteristics (multiple, multi-size, and randomly located leaks) and incorporating noise in the input data to account for the model- and measuring device- related uncertainties. A machine learning-based approach that uses simulated pressure as input to predict both location and size of leaks is proposed. Two different machine learning models: Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN), are trained and tested for the four study cases, and their performances are compared. The precision and recall results for the L-Town network indicate good accuracies for both the models for all study cases, with CNN generally outperforming MLP. 
    more » « less
  3. null (Ed.)
    The primary goal of the project is to leverage recent developments in smart water technologies to detect and reduce water leakages in large water distribution networks with the aid of neural networks. A cost effective non-invasive solution to detect leakages in transmission pipelines is needed by many water utilities as it will lead to significant water savings and reduced pipe breakage frequencies, especially in older infrastructure systems. The eventual goal of the project is to test the ANN model on a real network using field measured pressure and pipe breakage data after tuning and developing the model with simulated data. In this project we propose building a regression model, based on Multi-Layer Perceptron (MLP) algorithm, which is a class of feedforward Artificial Neural Networks (ANNs) to detect the leak locations within a proposed network. The model should be able to learn the structure, i.e. mapping of various leak nodes and sensor nodes in an area, such that it can detect the leak nodes based on the pressure values with significant accuracy. 
    more » « less
  4. Memory leak is a notorious issue. Despite the extensive efforts, addressing memory leaks in large production cloud systems remains challenging. Existing solutions incur high overhead and/or suffer from high inaccuracies. This paper presents RESIN, a solution designed to holistically address memory leaks in production cloud infrastructure. RESIN takes a divide-and-conquer approach to tackle the challenges. It performs a low-overhead detection first with a robust bucketization-based pivot scheme to identify suspicious leaking entities. It then takes live heap snapshots at appropriate time points in carefully sampled leak entities. RESIN analyzes the collected snapshots for leak diagnosis. Finally, RESIN automatically mitigates detected leaks. RESIN has been running in production in Microsoft Azure for 3 years. It reports on average 24 leak tickets each month with high accuracy and low overhead, and provides effective diagnosis reports. Its results translate into a 41× reduction of VM reboots caused by low memory. 
    more » « less
  5. Localizing pipe leaks is a significant challenge for water utilities worldwide. Pipe leaks in water distribution systems (WDSs) can cause the loss of a large amount of treated water, leading to pressure loss, increased energy costs, and contamination risks. What makes localizing pipe leaks challenging is the underground location of the water pipes and the similarity in impact on hydraulic properties (e.g., pressure, flow) due to leaks as compared to the effects of WDS operational changes. Physical methods to locate leaks are expensive, intrusive, and heavily localized. Computational approaches such as data-driven machine learning models provide an economical alternative to physical methods. Machine learning models are readily available and easily customizable to most problems; therefore, there is an increasing trend in their application for leak localization in WDSs. While several studies have applied machine learning models to localize leaks in single pipes and small test networks, these studies have yet to thoroughly test these models against the different complexities of leak localization problems, and hence their applicability to real-world WDSs is still unclear. The simplicity of the WDSs, the oversimplification of leak characteristics, and the lack of consideration of modeling and measuring device uncertainties adopted in most of these studies make the scalability of their proposed approaches questionable to real-world WDSs. Our study addresses this issue by devising four study cases of different complexity that account for realistic leak characteristics and model- and measuring device-related uncertainties. Two established machine learning models—multilayer perceptron (MLP) and convolutional neural network (CNN)—are trained and tested for their ability to localize the leaks and predict their sizes for each of the four study cases using different simulated hydraulic inputs. In addition, the potential benefit of combining different types of hydraulic data as inputs to the machine learning models in localizing leaks is also explored. Pressure and flow, two common hydraulic measurements, are used as inputs to the machine learning models. Further, the impact of single and multiple time point input in leak localization is also investigated. The results for the L-Town network indicate good accuracies for both the models for all study cases, with CNN consistently outperforming MLP. 
    more » « less