skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action
Non-Hermitian systems have recently attracted significant attention in photonics. One of the hallmarks of these systems is the possibility of realizing asymmetric mode-switching and omni-polarizer action through the dynamic encirclement of exceptional points (EPs). Here, we offer a new perspective on the operating principle of these devices, and we theoretically and experimentally show that linear asymmetric mode-switching and omni-polarizer action can be easily realized—with the same performance and limitations—using simple configurations that emulate the physics involved in encircling EPs without the complexity of actual encirclement schemes. The proposed concept of “encirclement emulators” and our theoretical and experimental results may allow better assessment of the limitations, practical potential, and applications of EP encirclements in non-Hermitian photonics.  more » « less
Award ID(s):
1741694
PAR ID:
10221975
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
4
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 563
Size(s):
Article No. 563
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineered non-Hermitian systems featuring exceptional points (EPs) can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, and electronics to atomic physics. In optics, non-Hermitian dynamics are typically realized using dissipation and phase-insensitive gain accompanied by unavoidable fluctuations. Here, we introduce non-Hermitian dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-parity-time (anti-PT) symmetry and a EP between its degenerate and nondegenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order EPs with two OPOs, tunable Floquet EPs in a reconfigurable dynamic non-Hermitian system, and the generation of a squeezed vacuum around EPs, all of which are not easy to realize in other non-Hermitian platforms. We believe our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities to realize nonlinear dynamical systems for enhanced sensing and quantum information processing. 
    more » « less
  2. Abstract Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs. 
    more » « less
  3. Non-Hermitian systems have attracted significant interest because of their intriguing properties, including exceptional points (EPs), where eigenvalues and the corresponding eigenstates coalesce. In particular, quantum systems with EPs exhibit an enhanced sensitivity to external perturbations, which increases with the order of the EP. Therefore, higher-order EPs hold significant potential for advanced sensing applications, but they are challenging to achieve due to stringent symmetry requirements. In this work, we study the dynamics of a generalized lossy waveguide beam splitter with asymmetric coupling by introducing non-reciprocity as a tunable parameter to achieve higher-order EPs even without dissipation. Moreover, we analyze the evolution of NOON-states under activated non-reciprocity, highlighting its impact on quantum systems. Our results open new pathways for realizing higher-order EPs in non-reciprocal open quantum systems. 
    more » « less
  4. Non-Hermitian Hamiltonians may still have real eigenvalues, provided that a combined parity-time (ƤƮ) symmetry exists. The prospect of ƤƮ symmetry has been explored in several physical systems such as photonics, acoustics, and electronics. The eigenvalues in these systems undergo a transition from real to complex at exceptional points (EPs), where the ƤƮ symmetry is broken. Here, we demonstrate the existence of EP in magnonic devices composed of two coupled magnets with different magnon losses. The eigenfrequencies and damping rates change from crossing to anti-crossing at the EP when the coupling strength increases. The magnonic dispersion includes a strong “acoustic-like” mode and a weak “optic-like” mode. Moreover, upon microwave radiation, the ƤƮ magnonic devices act as magnon resonant cavity with unique response compared to conventional magnonic systems. 
    more » « less
  5. Abstract We study the elastodynamics of a periodic metastructure incorporating a defect pair that enforces a parity-time (PT) symmetry due to judiciously engineered imaginary impedance elements—one having energy amplification (gain) and the other having an equivalent attenuation (loss) mechanism. We show that their presence affects the initial band structure of the periodic Hermitian metastructure and leads to the formation of numerous exceptional points (EPs) which are mainly located at the band edges where the local density of modes is higher. The spatial location of the PT-symmetric defect serves as an additional control over the number of emerging EPs in the corresponding spectra as well as the critical non-Hermitian (gain/loss) strength required to create the first EP—a specific defect location minimizes the critical non-Hermitian strength. We use both finite element and coupled-mode-theory-based models to investigate these metastructures and use a time-independent second-order perturbation theory to further demonstrate the influence of the size of the metastructure and the PT-symmetric defect location on the minimum non-Hermitian strength required to create the first EP in a band. Our findings motivate feasible designs for the experimental realization of EPs in elastodynamic metastructures. 
    more » « less