skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational Interaction in the Chimney Lattice Universe
We investigate the influence of the chimney topology T×T×R of the Universe on the gravitational potential and force that are generated by point-like massive bodies. We obtain three distinct expressions for the solutions. One follows from Fourier expansion of delta functions into series using periodicity in two toroidal dimensions. The second one is the summation of solutions of the Helmholtz equation, for a source mass and its infinitely many images, which are in the form of Yukawa potentials. The third alternative solution for the potential is formulated via the Ewald sums method applied to Yukawa-type potentials. We show that, for the present Universe, the formulas involving plain summation of Yukawa potentials are preferable for computational purposes, as they require a smaller number of terms in the series to reach adequate precision.  more » « less
Award ID(s):
1954454
PAR ID:
10222038
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Universe
Volume:
7
Issue:
4
ISSN:
2218-1997
Page Range / eLocation ID:
101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the effect of the cubic torus topology of the Universe on scalar cosmological perturbations which define the gravitational potential. We obtain three alternative forms of the solution for both the gravitational potential produced by point-like masses, and the corresponding force. The first solution includes the expansion of delta-functions into Fourier series, exploiting periodic boundary conditions. The second one is composed of summed solutions of the Helmholtz equation for the original mass and its images. Each of these summed solutions is the Yukawa potential. In the third formula, we express the Yukawa potentials via Ewald sums. We show that for the present Universe, both the bare summation of Yukawa potentials and the Yukawa-Ewald sums require smaller numbers of terms to yield the numerical values of the potential and the force up to desired accuracy. Nevertheless, the Yukawa formula is yet preferable owing to its much simpler structure. 
    more » « less
  2. null (Ed.)
    Searching for possible indicators of spatial topology of the Universe in the Cosmic Microwave Background data, one recognizes a quite promising interpretation which suggests that the shape of the space manifests itself in the form of anomalies in the large angular scale observations, such as the quadrupole and octopole alignment. Motivated by the presumptive existence of such a tempting connection, we study the chimney topology, T×T×R, which belongs to the class of toroidal topologies with a preferred direction. The infinite axis in this case may be attributed to the preferred axis of the aforementioned quadrupole and octopole alignment. We investigate the gravitational aspects of such a configuration. Namely, we reveal the form of the gravitational potential sourced by point-like massive bodies. Starting from the perturbed Einstein equations, which ensure the proper demonstration of relativistic effects, one can derive the Helmholtz equation for the scalar perturbation (gravitational potential). Through distinct alternative methods, we present the physically meaningful nontrivial exact solutions of this equation. Our approach excludes any presumptions regarding the spatial distribution of gravitating sources. We show that the particular solution that appears in the form of summed Yukawa potentials is indeed very convenient for the use in numerical calculations, in the sense that it provides the desired accuracy with fewer terms in the series. 
    more » « less
  3. In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)≃1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials. 
    more » « less
  4. We study in detail the Schrödinger equation corresponding to the four dimensional SU(2) 𝒩 = 2 SQCD theory with one flavour. We calculate the Voros symbols, or quantum periods, in four different ways: Borel summation of the WKB series, direct computation of Wronskians of exponentially decaying solutions, the TBA equations of Gaiotto-Moore-Neitzke/Gaiotto, and instanton counting. We make computations by all of these methods, finding good agreement. We also study the exact quantization condition for the spectrum, and we compute the Fredholm determinant of the inverse of the Schrödinger operator using the TS/ST correspondence and Zamolodchikov’s TBA, again finding good agreement. In addition, we explore two aspects of the relationship between singularities of the Borel transformed WKB series and BPS states: BPS states of the 4d theory are related to singularities in the Borel transformed WKB series for the quantum periods, and BPS states of a coupled 2d+4d system are related to singularities in the Borel transformed WKB series for local solutions of the Schrödinger equation. 
    more » « less
  5. We use the Dyson–Wyld diagrammatic technique to analyse the infinite series for the correlation functions of the velocity in hydrodynamic turbulence. We demonstrate the fundamental role played by the triple correlator of the velocity in determining the entire statistics of the hydrodynamic turbulence. All higher-order correlation functions are expressed through the triple correlator. This is shown through the suggested triangular re-summation of the infinite diagrammatic series for multi-point correlation functions. The triangular re-summation is the next logical step after the Dyson–Wyld line re-summation for the Green's function and the double correlator. In particular, it allows us to explain why the inverse cascade of the two-dimensional hydrodynamic turbulence is close to Gaussian. Since the triple correlator dictates the flux of energy$$\varepsilon$$through the scales, we support the Kolmogorov-1941 idea that$$\varepsilon$$is one of the main characteristics of hydrodynamic turbulence. 
    more » « less