skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing adaptive and random spacing schedules during learning to mastery criteria
Adaptive generation of spacing intervals in learning using response times improves learning relative to both adaptive systems that do not use response times and fixed spacing schemes (Mettler, Massey & Kellman, 2016). Studies have often used limited presentations (e.g., 4) of each learning item. Does adaptive practice benefit learning if items are presented until attainment of objective mastery criteria? Does it matter if mastered items drop out of the active learning set? We compared adaptive and non-adaptive spacing under conditions of mastery and dropout. Experiment 1 compared random presentation order with no dropout to adaptive spacing and mastery using the ARTS (Adaptive Response-time-based Sequencing) system. Adaptive spacing produced better retention than random presentation. Experiment 2 showed clear learning advantages for adaptive spacing compared to random schedules that also included dropout. Adaptive spacing performs better than random schedules of practice, including when learning proceeds to mastery and items drop out when mastered.  more » « less
Award ID(s):
1644916
PAR ID:
10222132
Author(s) / Creator(s):
; ; ;
Editor(s):
Denison, S.; Mack, M.; Xu, Y.; Armstrong, B. C.
Date Published:
Journal Name:
Proceedings of the Annual Conference of the Cognitive Science Society
ISSN:
1069-7977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Denison, S.; Mack, M.; Xu, Y.; Armstrong, B. C. (Ed.)
    Spacing presentations of learning items across time improves memory relative to massed schedules of practice – the well-known spacing effect. Spaced practice can be further enhanced by adaptively scheduling the presentation of learning items to deliver customized spacing intervals for individual items and learners. ARTS - Adaptive Response-time-based Sequencing (Mettler, Massey, & Kellman 2016) determines spacing dynamically in relation to each learner’s ongoing speed and accuracy in interactive learning trials. We demonstrate the effectiveness of ARTS when applied to chemistry nomenclature in community college chemistry courses by comparing adaptive schedules to fixed schedules consisting of continuously expanding spacing intervals. Adaptive spacing enhanced the efficiency and durability of learning, with learning gains persisting after a two-week delay and generalizing to a standardized assessment of chemistry knowledge after 2-3 months. Two additional experiments confirmed and extended these results in both laboratory and community college settings. 
    more » « less
  2. This paper documents a year-long experiment to “profile” the process of learning a programming language: gathering data to understand what makes a language hard to learn, and using that data to improve the learning process. We added interactive quizzes to The Rust Programming Language, the official textbook for learning Rust. Over 13 months, 62,526 readers answered questions 1,140,202 times. First, we analyze the trajectories of readers. We find that many readers drop-out of the book early when faced with difficult language concepts like Rust’s ownership types. Second, we use classical test theory and item response theory to analyze the characteristics of quiz questions. We find that better questions are more conceptual in nature, such as asking why a program does not compile vs. whether a program compiles. Third, we performed 12 interventions into the book to help readers with difficult questions. We find that on average, interventions improved quiz scores on the targeted questions by +20 
    more » « less
  3. null (Ed.)
    This study examined the difficulty introduced by spaced retrieval practice in Calculus I for undergraduate engineering students. Spaced retrieval practice is an instructional technique in which students engage in multiple recall exercises on the same topic with intermittent temporal delays in between. Spacing out retrieval practice increases the difficulty of the exercises, reducing student performance on them. However, empirical research indicates that spaced retrieval practice is associated with improvements in students’ long-term memory for the retrieved information. The short-term costs and long-term benefits of spaced retrieval practice is an example of desirable difficulty, when more difficult exercises during the early stages of learning result in longer-lasting memory [1]. With support from the National Science Foundation (NSF), we sought to address: Does spacing decrease performance on retrieval practice exercises in an engineering mathematics course? Results showed that student performance was significantly lower for questions in the spaced condition than questions in the massed condition, indicating that we successfully increased the difficulty of the questions by spacing them out over time. Future work will assess final quiz performance to determine whether spacing improved long-term course performance, i.e., whether the difficulty imposed by spacing was desirable. 
    more » « less
  4. Barner, D; Bramley, NR; Ruggeri, A; Walker, CM (Ed.)
    Spaced retrieval practice has been repeatedly demonstrated to improve learning, but its implementation is often constrained by real-world time limitations. This study investigated whether, under fixed study durations, learners should prioritize spacing or repetition. Across two experiments (total N = 1589), participants practiced Indonesian vocabulary under four conditions that varied in spacing and repetition. Item difficulty was also manipulated. Results showed that increasing repetitions at the cost of spacing enhanced immediate test performance, particularly for harder items. These findings suggest that spaced retrieval practice is effective only when learners have sufficient prior repetitions to retrieve information successfully. This study highlights the trade-offs between spacing and repetition under time constraints and offers practice insights for optimizing learning strategies. 
    more » « less
  5. Visual working memory (VWM) representations interact with attentional guidance, but there is controversy over whether multiple VWM items simultaneously influence attentional guidance. Extant studies relied on continuous variables like response times, which can obscure capture – especially if VWM representations cycle through interactive and non-interactive states. Previous conflicting findings regarding guidance when under high working memory (WM) load may be due to the use of noisier response time measures that mix capture and non-capture trials. Thus, we employed an oculomotor paradigm to characterize discrete attentional capture events under both high and low VWM load. Participants held one or two colors in memory, then executed a saccade to a target disk. On some trials, a distractor (sometimes VWM-matching) appeared simultaneously with the target. Eye movements were more frequently directed to a VWM-matching than a non-matching distractor for both load conditions. However, oculomotor capture by a VWM-matching distractor occurred less frequently under high compared with low load. These results suggest that attention is automatically guided toward items matching only one of two colors held in memory at a time, suggesting that items in VWM may cycle through attention-guiding and not-guiding states when more than one item is held in VWM and the task does not require that multiple items be maintained in an active, attention-guiding state. 
    more » « less