skip to main content


Title: FIRST Principles to Design for Online, Synchronous High School CS Teacher Training and Curriculum Co-Design
The Covid-19 pandemic has offered new challenges and opportunities for teaching and research. It has forced constraints on in-person gathering of researchers, teachers, and students, and conversely, has also opened doors to creative instructional design. This paper describes a novel approach to designing an online, synchronous teacher professional development (PD) and curriculum co-design experience. It shares our work in bringing together high school teachers and researchers in four US states. The teachers participated in a 3-week summer PD on ideas of Distributed Computing and how to teach this advanced topic to high school students using NetsBlox, an extension of the Snap! block-based programming environment. The goal of the PD was to prepare teachers to engage in collaborative co-design of a 9-week curricular module for use in classrooms and schools. Between their own training and the co-design process, teachers co-taught a group of high school students enrolled in a remote summer internship at a university in North Carolina to pilot the learned units and leverage ideas from their teaching experience for subsequent curricular co-design. Formative and summative feedback from teachers suggest that this PD model was successful in meeting desired outcomes. Our generalizable FIRST principles—Flexibility, Innovativeness, Responsiveness (and Respect), Supports, and Teamwork (collaboration)—that helped make this unique PD successful, can help guide future CS teacher PD designs.  more » « less
Award ID(s):
1949472 1949488
NSF-PAR ID:
10222352
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Koli Calling International Conference on Computing Education Research
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment. 
    more » « less
  2. Computational thinking is identified as one of the “essential skills for 21st-Century students.” [1] Studies of CT in school programs are being funded by many organizations, including the United States National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a research program (PREDICTS: Principles and Resources for Educators to Infuse Computational Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into introductory high school biology and chemistry classes for all students. Using curricular modules developed by program staff, two in biology and two in chemistry, teachers piloting the program engaged students in CT with computational evidence from authentic tools in order to develop understanding of science concepts. Each module, representing about a week of instruction, addresses science ideas in the prescribed course of study for high school programs. Project researchers have collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their effectiveness as a science teacher and their students’ ability to learn science, and; (3) content preparedness. In addition, we observed module implementation, collected and analyzed student artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results indicated some challenges (access to technology, varying levels of experience among students) and cause for optimism (student and teacher engagement in CT and the computational tools used in the modules). Continuing research efforts are described in this paper, along with descriptions of the curricular modules and the use of observations and “CT check-ins” to assess student engagement in, application of, and learning of CT. 
    more » « less
  3. In the decades since Papert published Mindstorms (1980), computation has transformed nearly every branch of scientific practice. Accordingly, there is increasing recognition that computation and computational thinking (CT) must be a core part of STEM education in a broad range of subjects. Previous work has demonstrated the efficacy of incorporating computation into STEM courses and introduced a taxonomy of CT practices in STEM. However, this work rarely involved teachers as more than implementers of units designed by researchers. In The Children’s Machine, Papert asked “What can be done to mobilize the potential force for change inherent in the position of teachers?” (Papert, 1994, pg. 79). We argue that involving teachers as co-design partners supports them to be cultural change agents in education. We report here on the first phase of a research project in which we worked with STEM educators to co-design curricular science units that incorporate computational thinking and practices. Eight high school teachers and one university professor joined nine members of our research team for a month-long Computational Thinking Summer Institute (CTSI). The co-design process was a constructionist design and learning experience for both the teachers and researchers. We focus here on understanding the co-design process and its implications for teachers by asking: (1) How did teachers shift in their attitudes and confidence regarding CT? (2) What different co-design styles emerged and did any tensions arise? Generally, we found that teachers gained confidence and skills in CT and computational tools over the course of the summer. Only one teacher reported a decrease in confidence in one aspect of CT (computational modeling), but this seemed to result from gaining a broader and more nuanced understanding of this rich area. A range of co-design styles emerged over the summer. Some teachers chose to focus on designing the curriculum and advising on the computational tools to be used in it, while leaving the construction of those tools to their co-designers. Other teachers actively participated in constructing models and computational tools themselves. The pluralism of co-design styles allowed teachers of various comfort levels with computation to meaningfully contribute to a computationally enhanced constructionist curriculum. However, it also led to a tension for some teachers between working to finish their curriculum versus gaining experience with computational tools. In the time crunch to complete their unit during CTSI, some teachers chose to save time by working on the curriculum while their co-design partners (researchers) created the supporting computational tools. These teachers still grew in their computational sophistication, but they could not devote as much time as they wanted to their own computational learning. 
    more » « less
  4. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less
  5. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less