Abstract High resolution cervical auscultation is a very promising noninvasive method for dysphagia screening and aspiration detection, as it does not involve the use of harmful ionizing radiation approaches. Automatic extraction of swallowing events in cervical auscultation is a key step for swallowing analysis to be clinically effective. Using time-varying spectral estimation of swallowing signals and deep feed forward neural networks, we propose an automatic segmentation algorithm for swallowing accelerometry and sounds that works directly on the raw swallowing signals in an online fashion. The algorithm was validated qualitatively and quantitatively using the swallowing data collected from 248 patients, yielding over 3000 swallows manually labeled by experienced speech language pathologists. With a detection accuracy that exceeded 95%, the algorithm has shown superior performance in comparison to the existing algorithms and demonstrated its generalizability when tested over 76 completely unseen swallows from a different population. The proposed method is not only of great importance to any subsequent swallowing signal analysis steps, but also provides an evidence that such signals can capture the physiological signature of the swallowing process.
more »
« less
Automatic Estimation of Laryngeal Vestibule Closure Duration Using High-Resolution Cervical Auscultation Signals
Purpose Safe swallowing requires adequate protection of the airway to prevent swallowed materials from entering the trachea or lungs (i.e., aspiration). Laryngeal vestibule closure (LVC) is the first line of defense against swallowed materials entering the airway. Absent LVC or mistimed/shortened closure duration can lead to aspiration, adverse medical consequences, and even death. LVC mechanisms can be judged commonly through the videofluoroscopic swallowing study; however, this type of instrumentation exposes patients to radiation and is not available or acceptable to all patients. There is growing interest in noninvasive methods to assess/monitor swallow physiology. In this study, we hypothesized that our noninvasive sensor-based system, which has been shown to accurately track hyoid displacement and upper esophageal sphincter opening duration during swallowing, could predict laryngeal vestibule status, including the onset of LVC and the onset of laryngeal vestibule reopening, in real time and estimate the closure duration with a comparable degree of accuracy as trained human raters. Method The sensor-based system used in this study is high-resolution cervical auscultation (HRCA). Advanced machine learning techniques enable HRCA signal analysis through feature extraction and complex algorithms. A deep learning model was developed with a data set of 588 swallows from 120 patients with suspected dysphagia and further tested on 45 swallows from 16 healthy participants. Results The new technique achieved an overall mean accuracy of 74.90% and 75.48% for the two data sets, respectively, in distinguishing LVC status. Closure duration ratios between automated and gold-standard human judgment of LVC duration were 1.13 for the patient data set and 0.93 for the healthy participant data set. Conclusions This study found that HRCA signal analysis using advanced machine learning techniques can effectively predict laryngeal vestibule status (closure or opening) and further estimate LVC duration. HRCA is potentially a noninvasive tool to estimate LVC duration for diagnostic and biofeedback purposes without X-ray imaging.
more »
« less
- Award ID(s):
- 1652203
- PAR ID:
- 10222451
- Date Published:
- Journal Name:
- Perspectives of the ASHA Special Interest Groups
- Volume:
- 5
- Issue:
- 6
- ISSN:
- 2381-4764
- Page Range / eLocation ID:
- 1647 to 1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Successful rehabilitation of oropharyngeal swallowing disorders (i.e., dysphagia) requires frequent performance of head/neck exercises that primarily rely on expensive biofeedback devices, often only available in large medical centers. This directly affects treatment compliance and outcomes, and highlights the need to develop a portable and inexpensive remote monitoring system for the telerehabilitation of dysphagia. Here, we present the development and preliminarily validation of a skin-mountable sensor patch that can fit on the curvature of the submental (under the chin) area noninvasively and provide simultaneous remote monitoring of muscle activity and laryngeal movement during swallowing tasks and maneuvers. This sensor patch incorporates an optimal design that allows for the accurate recording of submental muscle activity during swallowing and is characterized by ease of use, accessibility, reusability, and cost-effectiveness. Preliminary studies on a patient with Parkinson’s disease and dysphagia, and on a healthy control participant demonstrate the feasibility and effectiveness of this system.more » « less
-
Abstract Swallowing is an ensemble of voluntary and autonomic processes key to maintaining our body’s homeostatic balance. Abnormal swallowing (dysphagia) can cause dehydration, malnutrition, aspiration pneumonia, weight loss, anxiety, or even mortality—especially in older adults—by airway obstruction. To prevent or mitigate these outcomes, it is imperative to regularly assess swallowing ability in those who are at risk of developing dysphagia and those already diagnosed with it. However, current diagnostic tools such as endoscopy, manometry, and videofluoroscopy require access to clinical experts to interpret the results. These results are often sampled from a limited examination timeframe of swallowing activity in a controlled environment. Additionally, there is some risk of periprocedural complications associated with these methods. In contrast, the field of epidermal sensors is finding non-invasive and minimally obtrusive ways to examine swallowing function and dysfunction. In this review, we summarize the current state of wearable devices that are aimed at monitoring swallowing function and detecting its abnormalities. We pay particular attention to the materials and design parameters that enable their operation. We examine a compilation of both proof-of-concept studies (which focus mainly on the engineering of the device) and studies whose aims are biomedical (which may involve larger cohorts of subjects, including patients). Furthermore, we briefly discuss the methods of signal acquisition and device assessment in relevant wearable sensors. Finally, we examine the need to increase adherence and engagement of patients with such devices and discuss enhancements to the design of such epidermal sensors that may encourage greater enthusiasm for at-home and long-term monitoring.more » « less
-
null (Ed.)High-resolution cervical auscultation (HRCA) is an evolving clinical method for noninvasive screening of dysphagia that relies on data science, machine learning, and wearable sensors to investigate the characteristics of disordered swallowing function in people with dysphagia. HRCA has shown promising results in categorizing normal and disordered swallowing (i.e., screening) independent of human input, identifying a variety of swallowing physiological events as accurately as trained human judges. The system has been developed through a collaboration of data scientists, computer–electrical engineers, and speech-language pathologists. Its potential to automate dysphagia screening and contribute to evaluation lies in its noninvasive nature (wearable electronic sensors) and its growing ability to accurately replicate human judgments of swallowing data typically formed on the basis of videofluoroscopic imaging data. Potential contributions of HRCA when videofluoroscopic swallowing study may be unavailable, undesired, or not feasible for many patients in various settings are discussed, along with the development and capabilities of HRCA. The use of technological advances and wearable devices can extend the dysphagia clinician's reach and reinforce top-of-license practice for patients with swallowing disorders.more » « less
-
Aspiration is the most serious complication of dysphagia, which may lead to pneumonia. Detection of aspiration is limited by the presence of its signs like coughing and choking, which may be absent in many cases. High resolution cervical auscultations (HRCA) represent a promising non-invasive method intended for the detection of swallowing disorders. In this study, we investigate the potential of HRCA in detection of penetration-aspiration in patients suspected of dysphagia. A variety of features were extracted from HRCA in both time and frequency domains and they were tested for association with the presence of penetration-aspiration. Multiple classifiers were implemented also for aspiration detection using the extracted signal features. The results showed the presence of strong association between some HRCA signal features and penetration-aspiration, furthermore, they direct towards future directions to enhance prediction capability of aspiration using HRCA signals.more » « less
An official website of the United States government

