skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hot water drilling in the firn layer of Greenland's percolation zone
Abstract The intermixed thermal and structural framework of cold firn, water-saturated firn and ice layers in Greenland's percolation zone can be challenging to penetrate with core drills. Here, we present our experiences using a hot water drill for research on the firn layer of the percolation zone. We built and deployed a lightweight and easily transportable system for drilling a transect of ~15 cm diameter boreholes through the full firn column thickness, to depths exceeding 100 m. An instrumented drill stem provides a scientific measurement of the firn properties while drilling. The system was successful at gaining rapid access to the firn column with mixed wet and cold conditions, was easily transported to the site and across the glacier surface, and required a small field crew to operate. The boreholes are well suited for in situ investigations of firn processes in Greenland percolation zone.  more » « less
Award ID(s):
1717241 1717939
PAR ID:
10222468
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annals of Glaciology
ISSN:
1727-5644
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This archive contains firn temperature data collected at two sites in the western Greenland Ice Sheet percolation zone. The sites, T3 and Crawford Point (CP), are located along the Expéditions Glaciologiques Internationales au Groenland (EGIG) line. The data are time series of firn temperature measured in boreholes drilled to 100 m depth. The boreholes were drilled by hot water methods. The CP measurements span the period June to August, 2019. This borehole was drilled in 2018, so the temperature profile had fully recovered from the drilling thermal disturbance by the start of the time series. The T3 data span the period June 2019 to September 2021. This borehole was drilled in June 2019, so the time series of measurements includes the thermal recovery from drilling (several months) and two subsequent years. The dataset was collected as part of projects funded by the U.S. National Science Foundation. These measurements are associated with additional datasets collected as part of a NSF Arctic Observing Network project, and include measurements at multiple sites on the EGIG line of firn temperature and firn density/ice content. 
    more » « less
  2. null (Ed.)
    Abstract The Winkie Drill is an agile, commercially available rock coring system. The U.S. Ice Drilling Program has modified a Winkie Drill for subglacial rock and ice/rock interface coring, as well as drilling and coring access holes through ice. The original gasoline engine was replaced with an electric motor though the two-speed gear reducer and Unipress hand feed system were maintained. Using standard aluminum AW34 drill rod (for 33.5 mm diameter core), the system has a depth capability of 120 m. The drill uses forward fluid circulation in a closed loop system. The drilling fluid is Isopar K, selected for favorable properties in polar environment. When firn or snow is present at the drill site, casing with an inflatable packer can be deployed to contain the drill fluid. The Winkie Drill will operate from sea level to high altitudes and operation results in minimal environmental impact. The drill can be easily and quickly assembled and disassembled in the field by two people. All components can be transported by Twin Otter or helicopter to the field site. 
    more » « less
  3. null (Ed.)
    Abstract Processes governing meltwater penetration into cold firn remain poorly constrained. Here, in situ experiments are used to develop a grain-scale model to investigate physical limitations on meltwater infiltration in firn. At two sites in Greenland, drilling pumped water into cold firn to >75 m depth, and the thermo-hydrologic evolution of the firn column was measured. Rather than filling all available pore space, the water formed perched aquifers with downward penetration halted by thermal and density conditions. The two sites formed deep aquifers at ~40 m depth and at densities considerably less than the air pore close-off density (~725 kg m −3 at −18°C, and ~750 kg m −3 at −14°C), demonstrating that some pore space at depth remains inaccessible. A geometric grain-scale model of firn is constructed to quantify the limits of a descending fully saturated wetting front in cold firn. Agreement between the model and field data implies the model includes the first-order effects of water and heat flow in a firn lattice. The model constrains the relative importance of firn density, temperature and grain/pore size in inhibiting wetting front migration. Results imply that deep infiltration, including that which leads to firn aquifer formation, does not have access to all available firn pore space. 
    more » « less
  4. Abstract The thermal field within the firn layer on the Greenland Ice Sheet (GrIS) governs meltwater retention processes, firn densification with surface elevation change, and heat transfer from the surface boundary to deep ice. However, there are few observational data to constrain these processes with only sparse in situ temperature time series that do not extend through the full firn depth. Here, we quantify the thermal structure of Western Greenland’s firn column using instrumentation installed in an elevation transect of boreholes extending to 30 and 96 m depths. During the high‐melt summer of 2019, heat gain in the firn layer showed strong elevation dependency, with greater uptake and deeper penetration of heat at lower elevations. The bulk thermal conductivity increased by 15% per 100 m elevation loss due to higher density related to ice layers. Nevertheless, the conductive heat gain remained relatively constant along the transect due to stronger temperature gradients in the near surface firn at higher elevations. The primary driver of heat gain during this high melt summer was latent heat transfer, which increased up to ten‐fold over the transect, growing by 34 MJ m−2per 100 m elevation loss. The deep‐firn temperature gradient beneath the seasonally active layer doubled over a 270‐m elevation drop across the study transect, increasing heat flux from the firn layer into deep ice at lower elevations. Our in situ firn temperature time series offers observational constraints for modeling studies and insights into the future evolution of the percolation zone in a warmer climate. 
    more » « less
  5. Abstract. The Greenland and Antarctic ice sheets are covered in a layer of porous firn. Knowledge of firn structure improves our understanding of ice sheet mass balance, supra- and englacial hydrology, and ice core paleoclimate records. While macroscale firn properties, such as firn density, are relatively easy to measure in the field or lab, more intensive measurements of microstructural properties are necessary to reduce uncertainty in remote sensing observations of mass balance, model meltwater infiltration, and constrain ice age – gas age differences in ice cores. Additionally, as the duration and extent of surface melting increases, refreezing meltwater will greatly alter firn structure. Field observations of firn grain size and ice layer stratigraphy are required to test and validate physical models that simulate the ice-sheet-wide evolution of the firn layer. However, visually measuring grain size and ice layer distributions is tedious, is time-consuming, and can be subjective depending on the method. Here we demonstrate a method to systematically map firn core grain size and ice layer stratigraphy using a near-infrared hyperspectral imager (NIR-HSI; 900–1700 nm). We scanned 14 firn cores spanning ∼ 1000 km across western Greenland’s percolation zone with the NIR-HSI mounted on a linear translation stage in a cold laboratory. We leverage the relationship between effective grain size, a measure of NIR light absorption by firn grains, and NIR reflectance to produce high-resolution (0.4 mm) maps of effective grain size and ice layer stratigraphy. We show the NIR-HSI reproduces visually identified ice layer stratigraphy and infiltration ice content across all cores. Effective grain sizes change synchronously with traditionally measured grain radii with depth, although effective grains in each core are 1.5× larger on average, which is largely related to the differences in measurement techniques. To demonstrate the utility of the firn stratigraphic maps produced by the NIR-HSI, we track the 2012 melt event across the transect and assess its impact on deep firn structure by quantifying changes to infiltration ice content and grain size. These results indicate that NIR-HSI firn core analysis is a robust technique that can document deep and long-lasting changes to the firn column from meltwater percolation while quickly and accurately providing detailed firn stratigraphy datasets necessary for firn research applications. 
    more » « less