Abstract Long‐term potentiation (LTP) is a widely studied form of synaptic plasticity engaged during learning and memory. Here the ultrastructural evidence is reviewed that supports an elevated and sustained increase in the probability of vesicle release and recycling during LTP. In hippocampal area CA1, small dense‐core vesicles and tethered synaptic vesicles are recruited to presynaptic boutons enlarging active zones. By 2 h during LTP, there is a sustained loss of vesicles, especially in presynaptic boutons containing mitochondria and clathrin‐coated pits. This decrease in vesicles accompanies an enlargement of the presynaptic bouton, suggesting they supply membrane needed for the enlarged bouton surface area. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane. Non‐docked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. Electron tomography reveals clustering of docked vesicles at higher local densities in active zones after LTP. Furthermore, the tethering filaments on vesicles at the active zone are shorter, and their attachment sites are shifted closer to the active zone. These changes suggest more vesicles are docked, primed and ready for release. The findings provide strong ultrastructural evidence for a long‐lasting increase in release probability following LTP.image 
                        more » 
                        « less   
                    
                            
                            Shortened tethering filaments stabilize presynaptic vesicles in support of elevated release probability during LTP in rat hippocampus
                        
                    
    
            Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1707356
- PAR ID:
- 10222502
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 17
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2018653118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.more » « less
- 
            Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca 2+ -binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C 2 B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca 2+ influx.more » « less
- 
            Abstract Long-term potentiation (LTP) induces presynaptic bouton enlargement and a reduction in the number of synaptic vesicles. To understand the relationship between these events, we performed 3D analysis of serial section electron micrographs in rat hippocampal area CA1, 2 hours after LTP induction. We observed a high vesicle packing density in control boutons, contrasting with a lower density in most LTP boutons. Notably, the summed membrane area of the vesicles lost in low-density LTP boutons is comparable to the surface membrane required for the observed bouton enlargement when compared to high-density control boutons. These novel findings suggest that presynaptic vesicle density provides a new structural indicator of LTP that supports a local mechanism of bouton enlargement.more » « less
- 
            Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1–4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
