skip to main content


Title: 3D-Printed electrochemical sensor-integrated transwell systems
Abstract This work presents a 3D-printed, modular, electrochemical sensor-integrated transwell system for monitoring cellular and molecular events in situ without sample extraction or microfluidics-assisted downstream omics. Simple additive manufacturing techniques such as 3D printing, shadow masking, and molding are used to fabricate this modular system, which is autoclavable, biocompatible, and designed to operate following standard operating protocols (SOPs) of cellular biology. Integral to the platform is a flexible porous membrane, which is used as a cell culture substrate similarly to a commercial transwell insert. Multimodal electrochemical sensors fabricated on the membrane allow direct access to cells and their products. A pair of gold electrodes on the top side of the membrane measures impedance over the course of cell attachment and growth, characterized by an exponential decrease (~160% at 10 Hz) due to an increase in the double layer capacitance from secreted extracellular matrix (ECM) proteins. Cyclic voltammetry (CV) sensor electrodes, fabricated on the bottom side of the membrane, enable sensing of molecular release at the site of cell culture without the need for downstream fluidics. Real-time detection of ferrocene dimethanol injection across the membrane showed a three order-of-magnitude higher signal at the membrane than in the bulk media after reaching equilibrium. This modular sensor-integrated transwell system allows unprecedented direct, real-time, and noninvasive access to physical and biochemical information, which cannot be obtained in a conventional transwell system.  more » « less
Award ID(s):
1807604 1926793
NSF-PAR ID:
10222583
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
6
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction— In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an ‘ultrasound tweezers’-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed “actinin-sstFRET,” to monitor in situ single-cell allostasis in response to transient stimulation in real time. Methods— The ultrasound tweezers utilize 1 Hz, 10-second transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis. Results—By subjecting a 1 Hz, 10-second physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 minutes that caused them to adjust their contractility and actomyosin activities. The cellular machinery that underscores the vital role of CSK equilibrium in cellular mechanical allostasis, includes Ca2+ influx, remodeling of actomyosin CSK and contraction, and GTPase RhoA signaling. Mechanical allostasis was observed to be compromised in VSMCs from patients with type II diabetes mellitus (T2DM), which could potentiate an allostatic maladaptation. Conclusions— By integrating tools that simultaneously permit localized mechanical perturbation and map actomyosin forces, we revealed distinct cellular mechanical allostasis profiles in our micromechanical system. Our findings of cell mechanical allostasis and maladaptation provide the potential for mechanophenotyping cells to reveal their pathogenic contexts and their biophysical mediators that underlie multi-etiological diseases such as diabetes, hypertension, or aging. 
    more » « less
  2. null (Ed.)
    In this paper, we report on a novel biocompatible micromechanical bioreactor (actuator and sensor) designed for the in situ manipulation and characterization of live microtissues. The purpose of this study was to develop and validate an application-targeted sterile bioreactor that is accessible, inexpensive, adjustable, and easily fabricated. Our method relies on a simple polydimethylsiloxane (PDMS) molding technique for fabrication and is compatible with commonly-used laboratory equipment and materials. Our unique design includes a flexible thin membrane that allows for the transfer of an external actuation into the PDMS beam-based actuator and sensor placed inside a conventional 35 mm cell culture Petri dish. Through computational analysis followed by experimental testing, we demonstrated its functionality, accuracy, sensitivity, and tunable operating range. Through time-course testing, the actuator delivered strains of over 20% to biodegradable electrospun poly (D, L-lactide-co-glycolide) (PLGA) 85:15 non-aligned nanofibers (~91 µm thick). At the same time, the sensor was able to characterize time-course changes in Young’s modulus (down to 10–150 kPa), induced by an application of isopropyl alcohol (IPA). Furthermore, the actuator delivered strains of up to 4% to PDMS monolayers (~30 µm thick), simultaneously characterizing their elastic modulus up to ~2.2 MPa. The platform repeatedly applied dynamic (0.23 Hz) tensile stimuli to live Human Dermal Fibroblast (HDF) cells for 12 hours (h) and recorded the cellular reorientation towards two angle regimes, with averages of −58.85° and +56.02°. The device biocompatibility with live cells was demonstrated for one week, with no signs of cytotoxicity. We can conclude that our PDMS bioreactor is advantageous for low-cost tissue/cell culture micromanipulation studies involving mechanical actuation and characterization. Our device eliminates the need for an expensive experimental setup for cell micromanipulation, increasing the ease of live-cell manipulation studies by providing an affordable way of conducting high-throughput experiments without the need to open the Petri dish, reducing manual handling, cross-contamination, supplies, and costs. The device design, material, and methods allow the user to define the operational range based on their targeted samples/application. 
    more » « less
  3. Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatments are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovine model up to high population densities. With other applications, the CBR has achieved cell densities as high as 1.8 x 108 cells/mL over 7 days in an 11.4-mL chamber. For this study, our goal is to begin validating the CBR by optimizing the growth of CEM (human lymphoblastic leukemia) cells, which are similar cell to cytotoxic T lymphocytes (CTLs). This can be accomplished by measuring kinetic growth parameters based on the concentrations of glucose and inhibitory metabolites in the culture. We hypothesize that by designing a kinetic model from static culture experiments, we can predict the parameters necessary to achieve peak CEM and eventually CTL growth in the CBR. We will report on kinetic growth studies in which different glucose concentrations are tested, and a maximum specific growth rate and Monod constant determined, as well as studies where varying levels of the inhibitory growth byproducts, lactate and ammonium, are added to the culture and critical inhibitor concentrations are determined. Another recent conceptual development for the design of the CBR is a real-time monitoring and feedback control system to regulate the cellular environment, based on levels of surface co-receptors and mRNA signaling within the culture. Prior studies have pinpointed T cell exhaustion as a significant issue in achieving successful immunotherapy, particularly in treatments for solid tumors; T cell exhaustion occurs during a period of chronic antigen stimulation when the cells lose their ability to target and kill cancer cells, currently theorized to be associated with particular inhibitory receptors and cytokines in the immune system. Designing a system with a fiber optic sensor that can monitor the cell state and use feedback control to regulate the pathways involved in producing these receptors will ensure the cells maintain cytotoxic properties during the expansion process within a Centrifugal Fluidized Expansion we call the CentriFLEX. In this presentation, we will also report on early results from development of this exhaustion monitoring system. In brief, achieving optimal kinetic models for the CBR system and methods to prevent T cell exhaustion has the potential to significantly enhance culture efficiency and availability of immunotherapy treatments. 
    more » « less
  4. Abstract

    3D continuous mesoscale architectures of nanomaterials possess the potential to revolutionize real‐time electrochemical biosensing through higher active site density and improved accessibility for cell proliferation. Herein, 3D microporous Ti3C2TXMXene biosensors are fabricated to monitor antibiotic release in tissue engineering scaffolds. The Ti3C2TX‐coated 3D electrodes are prepared by conformal MXene deposition on 3D‐printed polymer microlattices. The Ti3C2TXMXene coating facilitates direct electron transfer, leading to the efficient detection of common antibiotics such as gentamicin and vancomycin. The 3D microporous architecture exposes greater electrochemically active MXene surface area, resulting in remarkable sensitivity for detecting gentamicin (10–1 mM) and vancomycin (100–1 mM), 1000 times more sensitive than control electrodes composed of 2D planar films of Ti3C2TXMXene. To characterize the suitability of 3D microporous Ti3C2TXMXene sensors for monitoring drug elution in bone tissue regeneration applications, osteoblast‐like (MG‐63) cells are seeded on the 3D MXene microlattices for 3, 5, and 7 days. Cell proliferation on the 3D microporous MXene is tracked over 7 days, demonstrating its promising biocompatibility and its clinical translation potential. Thus, 3D microporous Ti3C2TXMXene can provide a platform for mediator‐free biosensing, enabling new applications for in vivo monitoring of drug elution.

     
    more » « less
  5. Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines. 
    more » « less