skip to main content


Title: Extreme melt season ice layers reduce firn permeability across Greenland
Abstract

Surface meltwater runoff dominates present-day mass loss from the Greenland Ice Sheet. In Greenland’s interior, porous firn can limit runoff by retaining meltwater unless perched low-permeability horizons, such as ice slabs, develop and restrict percolation. Recent observations suggest that such horizons might develop rapidly during extreme melt seasons. Here we present radar sounding evidence that an extensive near surface melt layer formed following the extreme melt season in 2012. This layer was still present in 2017 in regions up to 700 m higher in elevation and 160 km further inland than known ice slabs. We find that melt layer formation is driven by local, short-timescale thermal and hydrologic processes in addition to mean climate state. These melt layers reduce vertical percolation pathways, and, under appropriate firn temperature and surface melt conditions, encourage further ice aggregation at their horizon. Therefore, the frequency of extreme melt seasons relative to the rate at which pore space and cold content regenerates above the most recent melt layer may be a key determinant of the firn’s multi-year response to surface melt.

 
more » « less
Award ID(s):
1745137
NSF-PAR ID:
10222610
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The expansion of refrozen ice slabs in Greenland's firn may enhance meltwater runoff and increase surface mass loss. However, the impermeability of ice slabs and the pathways for meltwater export from these regions remain poorly characterized. Here, we present ice‐penetrating radar observations of extensive meltwater infiltration and refreezing beneath ice slabs in Northwest Greenland. We show that these buried ice complexes form where supraglacial streams or lakes drain through surface crevasses into relict firn beneath the ice slabs. This suggests that the firn can continue to buffer mass loss from surface meltwater runoff and limit meltwater delivery to the ice sheet bed even after ice slabs have formed. Therefore, a significant time lag may exist between the initial formation of ice slabs and the onset of complete surface runoff and seasonal meltwater drainage to the subglacial system in interior regions of the ice sheet.

     
    more » « less
  2. Abstract. The Greenland Ice Sheet (GrIS) rapid mass loss is primarily driven by an increase in meltwater runoff, which highlights the importance of understanding the formation, evolution, and impact of meltwater features on the ice sheet. Buried lakes are meltwater features that contain liquid water and exist under layers of snow, firn, and/or ice. These lakes are invisible in optical imagery, challenging the analysis of their evolution and implication for larger GrIS dynamics and mass change. Here, we present a method that uses a convolutional neural network, a deep learning method, to automatically detect buried lakes across the GrIS. For the years 2018 and 2019 (which represent low- and high-melt years, respectively), we compare total areal extent of both buried and surface lakes across six regions, and we use a regional climate model to explain the spatial and temporal differences. We find that the total buried lake extent after the 2019 melt season is 56 % larger than after the 2018 melt season across the entire ice sheet. Northern Greenland has the largest increase in buried lake extent after the 2019 melt season, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that different processes are responsible for buried lake formation in different regions of the ice sheet. For example, in southwest Greenland, buried lakes often appear on the surface during the previous melt season, indicating that these meltwater features form when surface lakes partially freeze and become insulated as snowfall buries them. Conversely, in southeast Greenland, most buried lakes never appear on the surface, indicating that these features may form due to downward percolation of meltwater and/or subsurface penetration of shortwave radiation. We provide support for these processes via the use of a physics-based snow model. This study provides additional perspective on the potential role of meltwater on GrIS dynamics and mass loss. 
    more » « less
  3. The treatment of surface melt, runoff, and the snow-firn-ice transition in ice-sheet models (ISMs) is becoming increasingly important, as mobile liquid on Greenland and Antarctic flanks increases due to climate warming in the next century and beyond. Simple Positive Degree Day (PDD)-based box models used in some ISMs crudely capture liquid storage and refreezing, but need to be extended to include vertical structure through the whole firn-ice column, as in some regional climate models (RCMs). This is a necessary prelude to modeling the flow of mobile meltwater in channel-river-moulin systems, and routing to the base and/or margins of the ice sheet. More detailed column models of snow and firn exist, that include compaction, grain size, and other processes. Some focus on dry-snow zones, and have fine vertical resolution spanning the entire firn column with Lagrangian tracking of annual snow layers (e.g., FirnMICE: Lundin et al., J. Glac., 2017). However, they are mostly too computationally expensive for ISM applications, and are not designed for ablation zones with meltwater and bare ice in summer. More general models are used in some RCMs that include similar physics but with fewer layers, and are applicable both to accumulation and ablation zones. Here we formulate a new snow-firn model, similar to those in RCMs, for use within an ice-sheet model. A limited number of vertical layers is used (∼10), with Lagrangian tracking of layers, grain size evolution, compaction, ice lenses, liquid melting, storage, percolation and runoff. Surface melting is computed from linearized net atmospheric energy fluxes, not from PDDs. The model is tested using the FirnMICE experiments, and using gridded RACMO2 modern climate input over Greenland, seeking to balance model performance with computational efficiency. 
    more » « less
  4. Abstract

    Surface melt produces more mass loss than any other process on the Greenland Ice Sheet. In some regions of Greenland with high summer surface melt and high winter snow accumulation, the warm porous firn of the percolation zone can retain liquid meltwater through the winter. These regions of water‐saturated firn, which may persist for longer than one year, are known as firn aquifers, commonly referred to as perennial firn aquifers. Here, we use airborne ice‐penetrating radar data from the Center for Remote Sensing of Ice Sheets (CReSIS) to document the extent of four firn aquifers in the Helheim, Ikertivaq, and Køge Bugt glacier basins with more than six repeat radar flight lines from 1993 to 2018. All four firn aquifers first appear and/or show decadal‐scale inland expansion during this time period. Through an idealized energy‐balance calculation utilizing reanalysis data from the Modèle Atmosphérique Régionale (MAR) regional climate model, we find that these aquifer expansions are driven by decreasing cold content in the firn since the late 1990s and recently increasing high‐melt years, which has reduced the firn's ability for refreezing local meltwater. High‐melt years are projected to increase on the Greenland Ice Sheet and may contribute to the continued inland expansion of firn aquifers, impacting the ice sheet's surface mass balance and hydrological controls on ice dynamics.

     
    more » « less
  5. Abstract

    The relationship between firn microstructure and water movement is complex: firn microstructure controls the routing of meltwater through the firn while continuously being altered by liquid water flow processes. Importantly, microstructural transitions within the firn column can stall vertical meltwater percolation, which creates heterogeneities in liquid water content resulting in different rates of firn metamorphism. Physics‐based firn models aim to describe these processes to accurately predict ice layer or firn aquifer formation, but require detailed observations of firn structure to validate and inform percolation schemes. Here, we present grain size measurements and ice layer stratigraphy from seven firn cores collected in western Greenland's percolation zone during the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). Grain size transitions within the cores are negatively correlated with all temperature proxies for meltwater supply. Additionally, the number of grain size transitions are strongly anticorrelated with the number of ice layers within each core, despite these transitions, particularly fine‐over‐coarse transitions, promoting meltwater ponding and potential ice layer formation. To investigate if these negative correlations can be understood with firn model physics, we simulate water movement along stratigraphic transitions using the SNOWPACK model. We find that grain size transitions diminish from rapid grain growth in wet firn where ice layers can form, suggesting these microstructural transitions are unlikely to survive repeated meltwater infiltration. Incorporating these microstructure—meltwater feedbacks in firn models could improve their ability to model processes such as ice slab formation or firn aquifer recharge that require accurate predictions of meltwater infiltration depth.

     
    more » « less