skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Risks of Invariant Risk Minimization
Invariant Causal Prediction (Peters et al., 2016) is a technique for out-of-distribution generalization which assumes that some aspects of the data distribution vary across the training set but that the underlying causal mechanisms remain constant. Recently, Arjovsky et al. (2019) proposed Invariant Risk Minimization (IRM), an objective based on this idea for learning deep, invariant features of data which are a complex function of latent variables; many alternatives have subsequently been suggested. However, formal guarantees for all of these works are severely lacking. In this paper, we present the first analysis of classification under the IRM objective—as well as these recently proposed alternatives—under a fairly natural and general model. In the linear case, we give simple conditions under which the optimal solution succeeds or, more often, fails to recover the optimal invariant predictor. We furthermore present the very first results in the non-linear regime: we demonstrate that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution—this is precisely the issue that it was intended to solve. Thus, in this setting we find that IRM and its alternatives fundamentally do not improve over standard Empirical Risk Minimization.  more » « less
Award ID(s):
1955532 1909816
PAR ID:
10222689
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Learning Representations
Volume:
9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Domain generalization aims at performing well on unseen test environments with data from a limited number of training environments. Despite a proliferation of proposed algorithms for this task, assessing their performance both theoretically and empirically is still very challenging. Distributional matching algorithms such as (Conditional) Domain Adversarial Networks [12, 28] are popular and enjoy empirical success, but they lack formal guarantees. Other approaches such as Invariant Risk Minimization (IRM) require a prohibitively large number of training environments—linear in the dimension of the spurious feature space ds—even on simple data models like the one proposed by Rosenfeld et al. [37]. Under a variant of this model, we show that ERM and IRM can fail to fnd the optimal invariant predictor with o(ds) environments. We then present an iterative feature matching algorithm that is guaranteed with high probability to find the optimal invariant predictor after seeing only O(log ds) environments. Our results provide the first theoretical justification for distribution-matching algorithms widely used in practice under a concrete nontrivial data model. 
    more » « less
  2. null (Ed.)
    We show that the Invariant Risk Minimization (IRM) formulation of Arjovsky et al. (2019) can fail to capture “natural” invariances, at least when used in its practical “linear” form, and even on very simple problems which directly follow the motivating examples for IRM. This can lead to worse generalization on new environments, even when compared to unconstrained ERM. The issue stems from a significant gap between the linear variant (as in their concrete method IRMv1) and the full non-linear IRM formulation. Additionally, even when capturing the “right” invariances, we show that it is possible for IRM to learn a sub-optimal predictor, due to the loss function not being invariant across environments. The issues arise even when measuring invariance on the population distributions, but are exacerbated by the fact that IRM is extremely fragile to sampling. 
    more » « less
  3. Out-of-distribution (OOD) generalization on graphs aims at dealing with scenarios where the test graph distribution differs from the training graph distributions. Compared to i.i.d. data like images, the OOD generalization problem on graph-structured data remains challenging due to the non-i.i.d. property and complex structural information on graphs. Recently, several works on graph OOD generalization have explored extracting invariant subgraphs that share crucial classification information across different distributions. Nevertheless, such a strategy could be suboptimal for entirely capturing the invariant information, as the extraction of discrete structures could potentially lead to the loss of invariant information or the involvement of spurious information. In this paper, we propose an innovative framework, named Generative Risk Minimization (GRM), designed to generate an invariant subgraph for each input graph to be classified, instead of extraction. To address the challenge of optimization in the absence of optimal invariant subgraphs (i.e., ground truths), we derive a tractable form of the proposed GRM objective by introducing a latent causal variable, and its effectiveness is validated by our theoretical analysis. We further conduct extensive experiments across a variety of real-world graph datasets for both node-level and graph-level OOD generalization, and the results demonstrate the superiority of our framework GRM. 
    more » « less
  4. Multiple fairness constraints have been proposed in the literature, motivated by a range of concerns about how demographic groups might be treated unfairly by machine learning classifiers. In this work we consider a different motivation; learning from biased training data. We posit several ways in which training data may be biased, including having a more noisy or negatively biased labeling process on members of a disadvantaged group, or a decreased prevalence of positive or negative examples from the disadvantaged group, or both. Given such biased training data, Empirical Risk Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal accuracy on the true data distribution. We examine the ability of fairness-constrained ERM to correct this problem. In particular, we find that the Equal Opportunity fairness constraint [Hardt et al., 2016] combined with ERM will provably recover the Bayes optimal classifier under a range of bias models. We also consider other recovery methods including re-weighting the training data, Equalized Odds, and Demographic Parity, and Calibration. These theoretical results provide additional motivation for considering fairness interventions even if an actor cares primarily about accuracy. 
    more » « less
  5. Abstract In this paper we present an efficient active-set method for the solution of convex quadratic programming problems with general piecewise-linear terms in the objective, with applications to sparse approximations and risk-minimization. The algorithm is derived by combining a proximal method of multipliers (PMM) with a standard semismooth Newton method (SSN), and is shown to be globally convergent under minimal assumptions. Further local linear (and potentially superlinear) convergence is shown under standard additional conditions. The major computational bottleneck of the proposed approach arises from the solution of the associated SSN linear systems. These are solved using a Krylov-subspace method, accelerated by certain novel general-purpose preconditioners which are shown to be optimal with respect to the proximal penalty parameters. The preconditioners are easy to store and invert, since they exploit the structure of the nonsmooth terms appearing in the problem’s objective to significantly reduce their memory requirements. We showcase the efficiency, robustness, and scalability of the proposed solver on a variety of problems arising in risk-averse portfolio selection,$$L^1$$ L 1 -regularized partial differential equation constrained optimization, quantile regression, and binary classification via linear support vector machines. We provide computational evidence, on real-world datasets, to demonstrate the ability of the solver to efficiently and competitively handle a diverse set of medium- and large-scale optimization instances. 
    more » « less