skip to main content


Title: Quantifying the Autonomic Response to Stressors—One Way to Expand the Definition of “Stress” in Animals
Abstract Quantifying how whole organisms respond to challenges in the external and internal environment (“stressors”) is difficult. To date, physiological ecologists have mostly used measures of glucocorticoids (GCs) to assess the impact of stressors on animals. This is of course too simplistic as Hans Seyle himself characterized the response of organisms to “noxious stimuli” using multiple physiological responses. Possible solutions include increasing the number of biomarkers to more accurately characterize the “stress state” of animal or just measuring different biomarkers to more accurately characterize the degree of acute or chronic stressors an animal is experiencing. We focus on the latter and discuss how heart rate (HR) and heart rate variability (HRV) may be better predictors of the degree of activation of the sympathetic–adrenal–medullary system and complement or even replace measures of GCs as indicators of animal health, welfare, fitness, or their level of exposure to stressors. The miniaturization of biological sensor technology (“bio-sensors” or “bio-loggers”) presents an opportunity to reassess measures of stress state and develop new approaches. We describe some modern approaches to gathering these HR and HRV data in free-living animals with the aim that heart dynamics will be more integrated with measures of GCs as bio-markers of stress state and predictors of fitness in free-living animals.  more » « less
Award ID(s):
1749627
NSF-PAR ID:
10222709
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
60
Issue:
1
ISSN:
1540-7063
Page Range / eLocation ID:
113 to 125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs—specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels—but not baseline GCs—were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback—and the dynamic regulation of GCs—are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.

     
    more » « less
  2. Abstract

    Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.

     
    more » « less
  3. Objective

    We examine the spatiotemporal dynamics of neural activity and its correlates in heart rate and its variability (HR/HRV) during a fatiguing visuospatial working memory task.

    Background

    The neural and physiological drivers of fatigue are complex, coupled, and poorly understood. Investigations that combine the fidelity of neural indices and the field-readiness of physiological measures can facilitate measurements of fatigue states in operational settings.

    Method

    Sixteen healthy adults, balanced by sex, completed a 60-minute fatiguing visuospatial working memory task. Changes in task performance, subjective measures of effort and fatigue, cerebral hemodynamics, and HR/HRV were analyzed. Peak brain activation, functional and effective connections within relevant brain networks were contrasted against spectral and temporal features of HR/HRV.

    Results

    Task performance elicited increased neural activation in regions responsible for maintaining working memory capacity. With the onset of time-on-task effects, resource utilization was seen to increase beyond task-relevant networks. Over time, functional connections in the prefrontal cortex were seen to weaken, with changes in the causal relationships between key regions known to drive working memory. HR/HRV indices were seen to closely follow activity in the prefrontal cortex.

    Conclusion

    This investigation provided a window into the neurophysiological underpinnings of working memory under the time-on-task effect. HR/HRV was largely shown to mirror changes in cortical networks responsible for working memory, therefore supporting the possibility of unobtrusive state recognition under ecologically valid conditions.

    Applications

    Findings here can inform the development of a fieldable index for cognitive fatigue.

     
    more » « less
  4. The acute stress response can be considered the primary evolutionary adaptation to maximise fitness in the face of unpredictable environmental challenges. However, the difficulties of assessing physiology in natural environments mean comparatively little is known about how response variation influences fitness in free-living animals. Currently, determining acute stress physiology typically involves blood sampling or cardiac monitoring. Both require trapping and handling, interrupting natural behaviour, and potentially biasing our understanding toward trappable species/individuals. Importantly, limits on repeated sampling also restrict response phenotype characterisation, vital for linking stress with fitness. Surface temperature dynamics resulting from peripheral vasomotor activity during acute stress are increasingly promoted as alternative physiological stress indicators, which can be measured non-invasively using infrared thermal imaging, overcoming many limitations of current methods. Nonetheless, which aspects of stress physiology they represent remains unclear, as the underlying mechanisms are unknown. To date, validations have primarily targeted the hypothalamic-pituitary-adrenal axis, when the sympathetic-adrenal-medullary (SAM) system is likely the primary driver of vasomotor activity during acute stress. To address this deficit, we compared eye and bill region surface temperatures – measured using thermal imaging – with SAM system activity – measured as heart-rate-variability via electrocardiogram telemetry – in wild-caught captive house sparrows (Passer domesticus), during capture and handling. We found lower body surface temperatures were associated with increased sympathetic nervous system activation. Consequently, our data confirm body surface temperatures can act as a proxy for sympathetic activation during acute stress, providing potentially transformative opportunities for linking the acute stress response with fitness in the wild.

     
    more » « less
  5. ABSTRACT

    Considerable progress has been made in understanding the physiological basis for variation in the life‐history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter‐ and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRERmaintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRERallow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRERphenotype in animals, suggesting that ER stress and UPRERphenotype can be subjected to natural selection. The variation in UPRERphenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRERin animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRERin relation to key life‐history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRERin mediating the aforementioned life‐history traits in free‐living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRERin ecologically relevant settings, to characterize variation in ER stress and the UPRERin free‐living animals, and to relate the observed variation to key life‐history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life‐history trade‐offs in free‐living animals.

     
    more » « less