skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fading Gaussian Broadcast Channel with Channel State Information and Output Feedback
The fading broadcast channel (BC) with additive white Gaussian noise (AWGN) channel, channel output feedback (COF) and channel state information (CSI) is considered. Perfect CSI is available at the receivers, and unit delayed CSI along with COF at the transmitter. Under the assumption of memoryless fading, a posterior matching scheme that incorporates the additional CSI feedback into the coding scheme is presented. With COF, the achievable rates depend on the joint distribution of the fading process. Numerical examples show that the capacity region of two-user fading AWGN-BC is enlarged by COF. The coding scheme is however suboptimal since some parts of the achievable rate region are outperformed by superposition coding without COF.  more » « less
Award ID(s):
1900911
PAR ID:
10222807
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Symposium on Information Theory
Page Range / eLocation ID:
1474 to 1479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The broadcast channel may experience unequal link coherence times due to a number of factors including variation in node mobility or local scattering conditions. This means the block fading model for different links may have nonidentical block length, and the channel state information for the links may also not be identical. The faster the fading and the shorter the fading block length, the more often the link needs to be trained and estimated at the receiver, and the more likely that channel state information (CSI) is stale or unavailable at the transmitter. This paper investigates a MISO broadcast channel where some receivers experience longer coherence intervals and other receivers experience shorter coherence intervals and must estimate their receive-side CSI (CSIR) frequently. We consider a variety of transmit-side CSI (CSIT) conditions for the above mentioned model, including no CSIT, delayed CSIT, or hybrid CSIT. To investigate the degrees of freedom region, we employ interference alignment and beamforming along with a product superposition that allows simultaneous but noncontaminating transmission of pilots and data to different receivers. Outer bounds employ the extremal entropy inequality as well as a bounding of the performance of a discrete, memoryless, multiuser, multilevel broadcast channel. For several cases, inner and outer bounds are established that either partially meet, or the gap diminishes with increasing coherence time. 
    more » « less
  2. Free-space optical (FSO) links are sensitive to channel fading caused by atmospheric turbulence, varying weather conditions, and changes in the distance between the transmitter and receiver. To mitigate FSO fading, this paper applies linear and quadratic prediction to estimate fading channel conditions and dynamically select the appropriate low-density parity check (LDPC) code rate. This adaptivity achieves reliable communication while efficiently utilizing the available channel mutual information. Protograph-based Raptor-like (PBRL) LDPC codes supporting a wide range of rates are designed, facilitating convenient rate switching. When channel state information (CSI) is known without delay, dynamically selecting LDPC code rate appropriately maximizes throughput. This work explores how such prediction behaves as the feedback delay is increased from no delay to a delay of 4 ms for a channel with a coherence time of 10 ms. 
    more » « less
  3. We consider the multiple-input multiple-output (MIMO) wiretap channel with intersymbol interference (ISI) in which a transmitter (Alice) wishes to securely communicate with a receiver (Bob) in presence of an eavesdropper (Eve). We focus on the practically relevant setting in which there is no channel state information (CSI) at Alice about either of the channels to Bob or Eve, except statistical information about the ISI channels (i.e., Alice only knows the effective number of ISI taps). The key contribution of this work is to show that even with no CSI at Alice, positive secure degrees of freedom (SDoF) are achievable by carefully exploiting a) the heterogeneity of the ISI links to Bob and Eve, and b) the relative number of antennas at all the three terminals. To this end, we propose a novel achievable scheme that carefully mixes information and artificial noise symbols in order to exploit ISI heterogeneity to achieve positive SDoF. To the best of our knowledge, this is the first work to explore the idea of exploiting ISI channel length heterogeneity to achieve positive SDoF for the MIMO wiretap channel with no CSI at the legitimate transmitter. 
    more » « less
  4. We discuss the problem of designing channel access architectures for enabling fast, low-latency, grant-free and uncoordinated uplink for densely packed wireless nodes. Specifically, we extend the concept of random-access code introduced at ISIT’2017 by one of the authors to the practically more relevant case of the AWGN multiple-access channel (MAC) subject to Rayleigh fading, unknown to the decoder. We derive bounds on the fundamental limits of random-access coding and propose an alternating belief-propagation scheme as a candidate practical solution. The latter’s performance was found to be surprisingly close to the information-theoretic bounds. It is curious, thus, that while fading significantly increases the minimal required energy-per-bit Eb/N0 (from about 0-2 dB to about 8-11 dB), it appears that it is much easier to attain the optimal performance over the fading channel with a practical scheme by leveraging the inherent randomization introduced by the channel. Finally, we mention that while a number of candidate solutions (MUSA, SCMA, RSMA, etc.) are being discussed for the 5G, the information theoretic analysis and benchmarking has not been attempted before (in part due to lack of common random-access model). Our work may be seen as a step towards unifying performance comparisons of these methods. 
    more » « less
  5. Free-space optical (FSO) links are sensitive to channel fading caused by atmospheric turbulence, varying weather conditions, and changes in the distance between the transmitter and receiver. To mitigate FSO fading, this paper applies linear and quadratic prediction to estimate fading channel conditions and dynamically select the appropriate low-density parity check (LDPC) code rate. This adaptivity achieves reliable communication while efficiently utilizing the available channel mutual information. Protograph-based Raptor-like (PBRL) LDPC codes supporting a wide range of rates are designed, facilitating convenient rate switching. When channel state information (CSI) is known without delay, dynamically selecting LDPC code rate appropriately maximizes throughput. This work explores how such prediction behaves as the feedback delay is increased from no delay to a delay of 4 ms for a channel with a coherence time of 10 ms. 
    more » « less