skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tempo and mode of gene expression evolution in the brain across Primates
Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species. Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date. To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-Seq data from four brain regions in an unprecedented eighteen species. Here we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our sample that represents an unprecedented 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size and found several with signals of positive selection in their regulatory regions. Our study extensively broadens the context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for study of genetic regulation of brain development and evolution.  more » « less
Award ID(s):
1750377
PAR ID:
10223015
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution. 
    more » « less
  2. null (Ed.)
    Many genes that respond to infection have functions outside of immunity and have been found to be under natural selection. Pathogens may therefore incidentally alter nonimmune physiology through engagement with immune system genes. This raises a logical question of how genetically promiscuous the immune system is, here defined as how heavily cross-referenced the immune system is into other physiological systems. This work examined immune gene promiscuity across physiological systems in primates by assessing the baseline (unperturbed) expression of key tissue and cell types for differences, and primate genomes for signatures of selection. These efforts revealed “immune” gene expression to be cross-referenced extensively in other physiological systems in primates. When immune and nonimmune tissues diverge in expression, the differentially expressed genes at baseline are enriched for cell biological activities not immediately identifiable as immune function based. Individual comparisons of immune and nonimmune tissues in primates revealed low divergence in gene expression between tissues, with the exception of whole blood. Immune gene promiscuity increases over evolutionary time, with hominoids exhibiting the most cross-referencing of such genes among primates. An assessment of genetic sequences also found positive selection in the coding regions of differentially expressed genes between tissues functionally associated with immunity. This suggests that, with increasing promiscuity, divergent gene expression between the immune system and other physiological systems tends to be adaptive and enriched for immune functions in hominoids. 
    more » « less
  3. Many genes that respond to infection have functions outside of immunity and have been found to be under natural selection. Pathogens may therefore incidentally alter nonimmune physiology through engagement with immune system genes. This raises a logical question of how genetically promiscuous the immune system is, here defijined as how heavily cross-referenced the immune system is into other physiological systems. This work examined immune gene promiscuity across physiological systems in primates by assessing the baseline (unperturbed) expression of key tissue and cell types for diffferences, and primate genomes for signatures of selection. These effforts revealed “immune” gene expression to be cross-referenced extensively in other physiological systems in primates. When immune and nonim-mune tissues diverge in expression, the diffferentially expressed genes at baseline are enriched for cell biological activities not immediately identifijiable as immune function based. Individual comparisons of immune and nonimmune tissues in primates revealed low divergence in gene expression between tissues, with the exception of whole blood. Immune gene promiscuity increases over evolutionary time, with hominoids exhibiting the most cross-referencing of such genes among primates. An assessment of genetic sequences also found positive selection in the coding regions of diffferentially expressed genes between tissues functionally associated with immunity. This suggests that, with increasing promiscuity, divergent gene expression between the immune system and other physiological systems tends to be adaptive and enriched for immune functions in hominoids. 
    more » « less
  4. Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how “genomic signatures of selection” (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution. 
    more » « less
  5. Abstract Concerted developmental programming may constrain changes in component structures of the brain, thus limiting the ability of selection to form an adaptive mosaic of size‐variable brain compartments independent of total brain size or body size. Measuring patterns of gene expression underpinning brain scaling in conjunction with anatomical brain atlases can aid in identifying influences of concerted and/or mosaic evolution. Species exhibiting exceptional size and behavioral polyphenisms provide excellent systems to test predictions of brain evolution models by quantifying brain gene expression. We examined patterns of brain gene expression in a remarkably polymorphic and behaviorally complex social insect, the leafcutter antAtta cephalotes. The majority of significant differential gene expression observed among three morphologically, behaviorally, and neuroanatomically differentiated worker size groups was attributable to body size. However, we also found evidence of differential brain gene expression unexplained by worker morphological variation and transcriptomic analysis identified patterns not linearly correlated with worker size but sometimes mirroring neuropil scaling. Additionally, we identified enriched gene ontology terms associated with nucleic acid regulation, metabolism, neurotransmission, and sensory perception, further supporting a relationship between brain gene expression, brain mosaicism, and worker labor role. These findings demonstrate that differential brain gene expression among polymorphic workers underpins behavioral and neuroanatomical differentiation associated with complex agrarian division of labor inA. cephalotes. 
    more » « less