skip to main content


Title: Compound Risks of Hurricane Evacuation Amid the COVID‐19 Pandemic in the United States
Abstract

The 2020 Atlantic hurricane season was extremely active and included, as of early November, six hurricanes that made landfall in the United States during the global coronavirus disease 2019 (COVID‐19) pandemic. Such an event would necessitate a large‐scale evacuation, with implications for the trajectory of the pandemic. Here we model how a hypothetical hurricane evacuation from four counties in southeast Florida would affect COVID‐19 case levels. We find that hurricane evacuation increases the total number of COVID‐19 cases in both origin and destination locations; however, if transmission rates in destination counties can be kept from rising during evacuation, excess evacuation‐induced case numbers can be minimized by directing evacuees to counties experiencing lower COVID‐19 transmission rates. Ultimately, the number of excess COVID‐19 cases produced by the evacuation depends on the ability of destination counties to meet evacuee needs while minimizing virus exposure through public health directives. These results are relevant to disease transmission during evacuations stemming from additional climate‐related hazards such as wildfires and floods.

 
more » « less
Award ID(s):
2027369
NSF-PAR ID:
10454495
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
GeoHealth
Volume:
4
Issue:
12
ISSN:
2471-1403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During peak disease transmission in 2021, the compounding threat posed by the pandemic and hurricane season required coastal states to understand evacuation behaviors during a major hurricane to inform the planning process. While research relating to hurricane evacuation behavior and perceptions of risk has increased since the start of the pandemic, there is minimal understanding of how perceptions have changed now the COVID-19 vaccine is available. A total of 1075 individuals across seven U.S. coastal states participated in a study on evacuation intentions postvaccine availability. Findings revealed that most survey participants (50.9%) preferred to stay home if a major hurricane threatened their area, and only 3.9% would evacuate to a public shelter. Approximately half (56.2%) of individuals viewed the risk of being in a shelter as more dangerous than enduring hurricane hazards. When considering shelter use, nearly half of respondents (49.4%) stated they would evacuate to a shelter before the pandemic; now, only one-third (34.3%) would consider evacuating to a shelter during the pandemic. Statistically significant findings include the relationship between those who lived in evacuation zones A or B (25.5%) and the choice to shelter in place at home (40.5%) or evacuate to a hotel (36.9%). There was a statistically significant relationship between the level of education and choosing to evacuate to a hotel. Additionally, the influence of pet ownership on evacuation decision-making was found to be statistically significant. Officials can use the results of this study to strengthen community preparedness and planning strategies across diverse populations.

     
    more » « less
  2. Abstract Objective

    We aim to develop a hybrid model for earlier and more accurate predictions for the number of infected cases in pandemics by (1) using patients’ claims data from different counties and states that capture local disease status and medical resource utilization; (2) utilizing demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into a deep learning model.

    Materials and Methods

    We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses a graph attention network to capture spatio-temporal trends of disease dynamics and to predict the number of cases for a fixed number of days into the future. We also designed a dynamics-based loss term for enhancing long-term predictions. STAN was tested using both real-world patient claims data and COVID-19 statistics over time across US counties.

    Results

    STAN outperforms traditional epidemiological models such as susceptible-infectious-recovered (SIR), susceptible-exposed-infectious-recovered (SEIR), and deep learning models on both long-term and short-term predictions, achieving up to 87% reduction in mean squared error compared to the best baseline prediction model.

    Conclusions

    By combining information from real-world claims data and disease case counts data, STAN can better predict disease status and medical resource utilization.

     
    more » « less
  3. Abstract

    This study investigates how different risk predictors influenced households’ evacuation decisions during a dual‐threat event (Hurricane Laura and COVID‐19 pandemic). The Protective Action Decision Model (PADM) literature indicates that perceived threat variables are the most influential variables that drive evacuation decisions. This study applies the PADM to investigate a dual‐threat disaster that has conflicting protective action recommendations. Given the novelty, scale, span, impact, and messaging around COVID‐19, it is crucial to see how hurricanes along the Gulf Coast—a hazard addressed seasonally by residents with mostly consistent protective action messaging—produce different reactions in residents in this pandemic context. Household survey data were collected during early 2021 using a disproportionate stratified sampling procedure to include households located in mandatory and voluntary evacuation areas across the coastal counties in Texas and parishes in Louisiana that were affected by Hurricane Laura. Structural equation modeling was used to identify the relationships between perceived threats and evacuation decisions. The findings suggest affective risk perceptions strongly affected cognitive risk perceptions (CRPs). Notably, hurricane and COVID‐19 CRPs are significant predictors of hurricane evacuation decisions in different ways. Hurricane CRPs encourage evacuation, but COVID‐19 CRPs hinder evacuation decisions.

     
    more » « less
  4. Schieffelin, John (Ed.)
    Background Prediction of the dynamics of new SARS-CoV-2 infections during the current COVID-19 pandemic is critical for public health planning of efficient health care allocation and monitoring the effects of policy interventions. We describe a new approach that forecasts the number of incident cases in the near future given past occurrences using only a small number of assumptions. Methods Our approach to forecasting future COVID-19 cases involves 1) modeling the observed incidence cases using a Poisson distribution for the daily incidence number, and a gamma distribution for the series interval; 2) estimating the effective reproduction number assuming its value stays constant during a short time interval; and 3) drawing future incidence cases from their posterior distributions, assuming that the current transmission rate will stay the same, or change by a certain degree. Results We apply our method to predicting the number of new COVID-19 cases in a single state in the U.S. and for a subset of counties within the state to demonstrate the utility of this method at varying scales of prediction. Our method produces reasonably accurate results when the effective reproduction number is distributed similarly in the future as in the past. Large deviations from the predicted results can imply that a change in policy or some other factors have occurred that have dramatically altered the disease transmission over time. Conclusion We presented a modelling approach that we believe can be easily adopted by others, and immediately useful for local or state planning. 
    more » « less
  5. Abstract Shaped by human movement, place connectivity is quantified by the strength of spatial interactions among locations. For decades, spatial scientists have researched place connectivity, applications, and metrics. The growing popularity of social media provides a new data stream where spatial social interaction measures are largely devoid of privacy issues, easily assessable, and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI) based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US county level, exhibits a strong positive association with SafeGraph population movement records (10% penetration in the US population) and Facebook’s social connectedness index (SCI), a popular connectivity index based on social networks. We found that PCI has a strong boundary effect and that it generally follows the distance decay, although this force is weaker in more urbanized counties with a denser population. Our investigation further suggests that PCI has great potential in addressing real-world problems that require place connectivity knowledge, exemplified with two applications: (1) modeling the spatial spread of COVID-19 during the early stage of the pandemic and (2) modeling hurricane evacuation destination choice. The methodological and contextual knowledge of PCI, together with the open-sourced PCI datasets at various geographic levels, are expected to support research fields requiring knowledge in human spatial interactions. 
    more » « less