In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
more »
« less
Statistical mechanics of a double-stranded rod model for DNA melting and elasticity
The double-helical topology of DNA molecules observed at room temperature in the absence of any external loads can be disrupted by increasing the bath temperature or by applying tensile forces, leading to spontaneous strand separation known as DNA melting. Here, continuum mechanics of a 2D birod is combined with statistical mechanics to formulate a unified framework for studying both thermal melting and tensile force induced melting of double-stranded molecules: it predicts the variation of melting temperature with tensile load, provides a mechanics-based understanding of the cooperativity observed in melting transitions, and reveals an interplay between solution electrostatics and micromechanical deformations of DNA which manifests itself as an increase in the melting temperature with increasing ion concentration. This novel predictive framework sheds light on the micromechanical aspects of DNA melting and predicts trends that were observed experimentally or extracted phenomenologically using the Clayperon equation.
more »
« less
- Award ID(s):
- 1662101
- PAR ID:
- 10223162
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 16
- Issue:
- 33
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7715 to 7726
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chloroquine has been used as a potent antimalarial, anticancer drug, and prophylactic. While chloroquine is known to interact with DNA, the details of DNA–ligand interactions have remained unclear. Here we characterize chloroquine–double-stranded DNA binding with four complementary approaches, including optical tweezers, atomic force microscopy, duplex DNA melting measurements, and isothermal titration calorimetry. We show that chloroquine intercalates into double stranded DNA (dsDNA) with a KD ~ 200 µM, and this binding is entropically driven. We propose that chloroquine-induced dsDNA intercalation, which happens in the same concentration range as its observed toxic effects on cells, is responsible for the drug’s cytotoxicity.more » « less
-
Abstract The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems.more » « less
-
Abstract 2D nanoslit devices, where two crystals with atomically flat surfaces are separated by only a few nanometers, have attracted considerable attention because their tunable control over the confinement allows for the discovery of unusual transport behavior of gas, water, and ions. Here, the passage of double‐stranded DNA molecules is studied through nanoslits fabricated from exfoliated 2D materials, such as graphene or hexagonal boron nitride, and the DNA polymer behavior is examined in this tight confinement. Two types of events are observed in the ionic current: long current blockades that signal DNA translocation and short spikes where DNA enters the slits but withdraws. DNA translocation events exhibit three distinct phases in their current‐blockade traces—loading, translation, and exit. Coarse‐grained molecular dynamics simulation allows the different polymer configurations of these phases to be identified. DNA molecules, including folds and knots in their polymer structure, are observed to slide through the slits with near‐uniform velocity without noticeable frictional interactions of DNA with the confining graphene surfaces. It is anticipated that this new class of 2D‐nanoslit devices will provide unique ways to study polymer physics and enable lab‐on‐a‐chip biotechnology.more » « less
-
Abstract CRISPR‐based biosensors often rely on colorimetric, fluorescent, or electrochemical signaling mechanism, which involves expensive reporters and/or sophisticated equipment. Here, we demonstrated a simple, inexpensive, nonoptical, and sensitive CRISPR‐Cas12a‐based sensing platform to detect ssDNA targets by sizing double‐stranded λ DNA as novel report molecules. In this platform, the size reduction of λ DNA was quantified by gel electrophoresis analysis. We hypothesize that the massivetrans‐nuclease activity of Cas12a toward λ DNA is due to the presence of single‐stranded looped structures along the λ DNA sequence. In addition, we observed a strong binding affinity between Cas12a and λ DNA, which further promotes thetrans‐cleavage activity and helps achieve sub‐picomolar detection sensitivity, ≈100 times more sensitive than the fluorescent counterpart. The concept of utilizing the physical size change of λ DNA unlocks the possibility of using a variety of dsDNA as CRISPR reporters.more » « less
An official website of the United States government

