skip to main content


Title: High‐Pressure Deformation of Iron–Nickel–Silicon Alloys and Implications for Earth’s Inner Core
Abstract

Earth’s inner core exhibits strong seismic anisotropy, often attributed to the alignment of hexagonal close‐packed iron (hcp‐Fe) alloy crystallites with the Earth’s poles. How this alignment developed depends on material properties of the alloy and is important to our understanding of the core’s crystallization history and active geodynamical forcing. Previous studies suggested that hcp‐Fe is weak under deep Earth conditions but did not investigate the effects of the lighter elements known to be part of the inner core alloy. Here, we present results from radial X‐ray diffraction experiments in a diamond anvil cell that constrain the strength and deformation properties of iron‐nickel‐silicon (Fe–Ni–Si) alloys up to 60 GPa. We also show the results of laser heating to 1650 K to evaluate the effect of temperature. Observed alloy textures suggest different relative activities of the various hcp deformation mechanisms compared to pure Fe, but these textures could still account for the theorized polar alignment. Fe–Ni–Si alloys are mechanically stronger than Fe and Fe–Ni; extrapolated to inner core conditions, Si‐bearing alloys may be more than an order of magnitude stronger. This enhanced strength proportionally reduces the effectivity of dislocation creep as a deformation mechanism, which may suggest that texture developed during crystallization rather than as the result of postsolidification plastic flow.

 
more » « less
Award ID(s):
1654687
NSF-PAR ID:
10449899
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The seismic anisotropy of the Earth’s solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111>slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc+hcp state up to 40 GPa. The hcp phase forms first with a distinct {11¯20} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11¯20> slip, combined with {10¯12}<¯1011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions. 
    more » « less
  2. SUMMARY

    The seismic anisotropy of the Earth's solid inner core has been the topic of much research. It could be explained by the crystallographic preferred orientation (CPO) developing during convection. The likely phase is hexagonal close-packed iron (hcp), alloyed with nickel and some lighter elements. Here we use high energy synchrotron X-rays to study CPO in Fe-9wt%Si, uniaxially compressed in a diamond anvil cell in radial geometry. The experiments reveal that strong preferred orientation forms in the low-pressure body-centred cubic (bcc) phase that appears to be softer than pure iron. CPO is attributed to dominant {110}<111> slip. The onset of the bcc→hcp transition occurs at a pressure of ≈15 GPa, and the alloy remains in a two phase bcc + hcp state up to 40 GPa. The hcp phase forms first with a distinct {11$\bar{2}$0} maximum perpendicular to compression. Modelling shows that this is a transformation texture, which can be described by Burgers orientation relationship with variant selection. Experimental results suggest that bcc grains oriented with <100> parallel to compression transform into hcp first. The CPO of the hcp changes only slowly during further pressure and deviatoric stress increase at ambient temperature. After heating to 1600 K, a change in the hcp CPO is observed with alignment of (0001) planes perpendicular to compression that can be interpreted as dominant (0001)<11$\bar{2}$0> slip, combined with {10$\bar{1}$2}<$\bar{1}$011> mechanical twinning, which is similar to the deformation modes suggested previously for pure hcp iron at inner core conditions.

     
    more » « less
  3. Abstract

    Hexagonal close‐packed (hcp) structured Fe‐Ni alloy is believed to be the dominant phase in the Earth's inner core. This phase is expected to contain 4%–5% light elements, such as Si and H. While the effects of individual light element candidates on the equation of state (EoS) of the hcp Fe metal have been studied, their combined effects remain largely unexplored. In this study, we report the equations of state for two hcp‐structured Fe‐Si‐H alloys, namely Fe0.83Si0.17H0.07and Fe0.83Si0.17H0.46, using synchrotron X‐ray diffraction measurements up to 125 GPa at 300 K. These alloys were synthesized by cold compression of Fe‐9wt%Si in either pure H2or Ar‐H2mixture medium in diamond‐anvil cells. The volume increase caused by a H atom in hcp Fe‐Si‐H alloys is approximately eight times greater than that by a Si atom. We used the improved data set to develop a composition‐dependent EoS that covers a wide range of compositions. Our calculated density and bulk sound velocity of hcp Fe‐Si‐H alloys suggest a large trade‐off between Si and H contents in fitting the seismic properties of the inner core. Combining our new EoS with geophysical and geochemical constraints, we propose 1.6–3 wt% Si and 0.15–0.6 wt% H in the Earth's inner core.

     
    more » « less
  4. null (Ed.)
    Understanding the effect of carbon on the density of hcp (hexagonal-close-packed) Fe-C alloys is essential for modeling the carbon content in the Earth’s inner core. Previous studies have focused on the equations of state of iron carbides that may not be applicable to the solid inner core that may incorporate carbon as dissolved carbon in metallic iron. Carbon substitution in hcp-Fe and its effect on the density have never been experimentally studied. We investigated the compression behavior of Fe-C alloys with 0.31 and 1.37 wt % carbon, along with pure iron as a reference, by in-situ X-ray diffraction measurements up to 135 GPa for pure Fe, and 87 GPa for Fe-0.31C and 109 GPa for Fe-1.37C. The results show that the incorporation of carbon in hcp-Fe leads to the expansion of the lattice, contrary to the known effect in body-centered cubic (bcc)-Fe, suggesting a change in the substitution mechanism or local environment. The data on axial compressibility suggest that increasing carbon content could enhance seismic anisotropy in the Earth’s inner core. The new thermoelastic parameters allow us to develop a thermoelastic model to estimate the carbon content in the inner core when carbon is incorporated as dissolved carbon hcp-Fe. The required carbon contents to explain the density deficit of Earth’s inner core are 1.30 and 0.43 wt % at inner core boundary temperatures of 5000 K and 7000 K, respectively. 
    more » « less
  5. Earth’s inner core is predominantly composed of solid iron (Fe) and displays intriguing properties such as strong shear softening and an ultrahigh Poisson’s ratio. Insofar, physical mechanisms to explain these features coherently remain highly debated. Here, we have studied longitudinal and shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure–temperature conditions of the inner core using in situ shock experiments and machine learning molecular dynamics (MLMD) simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the Hugoniot in the premelting condition, defined asT/Tm(Tm: melting temperature of iron) above 0.96, is significantly reduced by ~30%, while Poisson’s ratio jumps to approximately 0.44. MLMD simulations at 230 to 330 GPa indicate that collective motion with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010] crystallographic direction, contributing to its elastic softening and enhanced Poisson’s ratio. Our study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-loop and close-loop clusters in the inner core conditions. Hcp-Fe with collective motion at the inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with collective motion behaves like an extremely soft solid with an ultralow shear modulus and an ultrahigh Poisson’s ratio that are consistent with seismic observations of the region. Our findings indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical mechanism to help explain the unique seismic and geodynamic features of the inner core.

     
    more » « less