skip to main content


Title: Field Line Resonances in Jupiter's Magnetosphere
Abstract

The arrival of the Juno satellite at Jupiter has led to an increased interest in the dynamics of the Jovian magnetosphere. Jupiter's auroral emissions often exhibit quasiperiodic oscillations with periods of tens of minutes. Magnetic observations indicate that ultralow‐frequency (ULF) waves with similar periods are often seen in data from Galileo and other satellites traversing the Jovian magnetosphere. Such waves can be associated with field line resonances, which are standing shear Alfvén waves on the field lines. Using model magnetic fields and plasma distributions, the frequencies of field line resonances and their harmonics on field lines connecting to the main auroral oval have been determined. Time domain simulations of Alfvén wave propagation have illustrated the evolution of such resonances. These studies indicate that harmonics of the field line resonances are common in the 10–40 min band.

 
more » « less
Award ID(s):
1840891
NSF-PAR ID:
10449259
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It has been suggested that ion foreshock waves originating in the solar wind upstream of the quasi-parallel ( Q -||) shock can impact the planetary magnetosphere leading to standing shear Alfvén waves, i.e., the field line resonances (FLRs). In this paper, we carry out simulations of interaction between the solar wind and terrestrial magnetosphere under radial interplanetary magnetic field conditions by using a 3-D global hybrid model, and show the properties of self-consistently generated field line resonances through direct mode conversion in magnetospheric response to the foreshock disturbances for the first time. The simulation results show that the foreshock disturbances from the Q -|| shock can excite magnetospheric ultralow-frequency waves, among which the toroidal Alfvén waves are examined. It is found that the foreshock wave spectrum covers a wide frequency range and matches the band of FLR harmonics after excluding the Doppler shift effects. The fundamental harmonic of field line resonances dominates and has the strongest wave power, and the higher the harmonic order, the weaker the corresponding wave power. The nodes and anti-nodes of the odd and even harmonics in the equatorial plane are also presented. In addition, as the local Alfvén speed increases earthward, the corresponding frequency of each harmonic increases. The field-aligned current in the cusp region indicative of the possibly observable aurora is found to be a result of magnetopause perturbation which is caused by the foreshock disturbances, and a global view substantiating this scenario is given. Finally, it is found that when the solar wind Mach number decreases, the strength of both field line resonance and field-aligned current decreases accordingly. 
    more » « less
  2. Abstract

    The ionospheric Alfvén resonator (IAR) is a structure formed by the rapid decrease in the plasma density above a planetary ionosphere. This results in a corresponding increase in the Alfvén speed that can provide partial reflection of Alfvén waves. At Earth, the IAR on auroral field lines is associated with the broadband acceleration of auroral particles, sometimes termed the Alfvénic aurora. This arises since phase mixing in the IAR reduces the perpendicular wavelength of the Alfvén waves, which enhances the parallel electric field due to electron inertia. This parallel electric field fluctuates at frequencies of 0.1–20.0 Hz, comparable to the electron transit time through the acceleration region, leading to the broadband acceleration. The prevalence of such broadband acceleration at Jupiter suggests that a similar process can occur in the Jovian IAR. A numerical model of Alfvén wave propagation in the Jovian IAR has been developed to investigate these interactions, indicating that the IAR resonant frequencies are in the same range as those at Earth. This model describes the evolution of the electric and magnetic fields in the low‐altitude region close to Jupiter that is sampled during Juno's perijove passes. In particular, the model relates measurement of magnetic fields below the ion cyclotron frequency from the MAG and Waves instruments on Juno and electric fields from Waves to the associated parallel electric fields that can accelerate auroral particles.

     
    more » « less
  3. Abstract

    We have conducted a statistical study of toroidal mode standing Alfvén waves detected by the Van Allen Probes spacecraft in the dayside inner magnetosphere, with an emphasis on the nodal structure of the fundamental through fifth harmonics. We developed a technique to accurately assign harmonic mode numbers to peaks in the power spectra of the electric (Eν) and magnetic (Bϕ) field components of toroidal waves and then determine the spectral intensities ofEνandBϕand the coherence and cross‐phase between these field components for each harmonic. The magnetic latitude (MLAT) dependence of these quantities was statistically examined to determine the location of the nodes. In addition to the equatorial nodes located close to the equator (MLAT = 0), we identified several nodes away from the equator within the MLAT range from −20° to +20°. We found that theEνBϕcross‐phase is very close to ±90° except near the nodes, indicating that the fixed‐end approximation is appropriate in modeling dayside toroidal waves. Noting that the node latitudes depend on the distribution of the mass density (ρ) along the background magnetic field, we inferred the distribution from the nodes observed atL = 4–6. If we adopt a model field line mass density (ρ) distribution of the formρ ∝ (1/r)α, whereris geocentric distance to the field line andαis a free parameter, the statistically determined node latitudes indicate thatα∼1.5 is appropriate for both the plasmasphere and the plasmatrough.

     
    more » « less
  4. Abstract

    Surface waves on Earth's magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground‐based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere‐ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field‐aligned currents (FACs), due to both the surface mode and its non‐resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open‐closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward FAC perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving FAC structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90° compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East‐West ground magnetic field component. Overall, all ground‐based signatures of the magnetopause surface mode are predicted to have the same frequency acrossL‐shells, amplitudes that maximize near the magnetopause's equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed.

     
    more » « less
  5. Ultra-Low-Frequency (ULF) waves provide a means for the rapid propagation of energy and field-aligned current in planetary magnetospheres. At Earth, the ULF frequency range is usually defined as including waves with periods of 0.2–600 s; however, at Jupiter these waves can extend to periods of tens of minutes. In both magnetospheres, shear mode Alfvén waves can form field line resonances that exist between the ionospheres, with periods of a few minutes at Earth and a few tens of minutes at Jupiter. A major distinction between these two magnetospheres is in the density distribution. Earth has a dense ionosphere full of heavy ions, an extended, cold plasmasphere and a relatively low-density plasma sheet. In contrast, at Jupiter, the ionosphere is largely hydrogen (both in atomic form and in the H 3 + molecular ion), there is no appreciable plasmasphere and the plasma disk is dense and populated with heavy ions (largely sulfur and oxygen) originating at the moon Io and to some extent from other moons. As at Earth, the sharp Alfvén speed gradient above the ionosphere forms an ionospheric Alfvén resonator at Jupiter with periods of seconds. Furthermore, the high-latitude lobes at Jupiter have very low density and a resonant structure can be formed by waves bouncing between the ionosphere and the dense plasma disk. This structure leads to periods of tens of seconds. Finally, the dense Io plasma torus and plasma sheet provide conditions for compressional cavity modes to form in this region. Thus, the structure of the field line resonance modes is quite different at the two planets. Implications of these resonances on auroral particle acceleration will be discussed. 
    more » « less