skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness
In active matter systems, self-propelled particles can self-organize to undergo collective motion, leading to persistent dynamical behavior out of equilibrium. In cells, cytoskeletal filaments and motor proteins form complex structures important for cell mechanics, motility, and division. Collective dynamics of cytoskeletal systems can be reconstituted using filament gliding experiments, in which cytoskeletal filaments are propelled by surface-bound motor proteins. These experiments have observed diverse dynamical states, including flocks, polar streams, swirling vortices, and single-filament spirals. Recent experiments with microtubules and kinesin motor proteins found that the collective behavior of gliding filaments can be tuned by altering the concentration of the crowding macromolecule methylcellulose in solution. Increasing the methylcellulose concentration reduced filament crossing, promoted alignment, and led to a transition from active, isotropically oriented filaments to locally aligned polar streams. This emergence of collective motion is typically explained as an increase in alignment interactions by Vicsek-type models of active polar particles. However, it is not yet understood how steric interactions and bending stiffness modify the collective behavior of active semiflexible filaments. Here we use simulations of driven filaments with tunable soft repulsion and rigidity in order to better understand how the interplay between filament flexibility and steric effects can lead to different active dynamic states. We find that increasing filament stiffness decreases the probability of filament alignment, yet increases collective motion and long-range order, in contrast to the assumptions of a Vicsek-type model. We identify swirling flocks, polar streams, buckling bands, and spirals, and describe the physics that govern transitions between these states. In addition to repulsion and driving, tuning filament stiffness can promote collective behavior, and controls the transition between active isotropic filaments, locally aligned flocks, and polar streams.  more » « less
Award ID(s):
1725065
PAR ID:
10223344
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
41
ISSN:
1744-683X
Page Range / eLocation ID:
9436 to 9442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ordered, collective motions commonly arise spontaneously in systems of many interacting, active units, ranging from cellular tissues and bacterial colonies to self-propelled colloids and animal flocks. Active phases are especially rich when the active units are sufficiently anisotropic to produce liquid crystalline order and thus active nematic phenomena, with important biophysical examples provided by cytoskeletal filaments including microtubules and actin. Gliding assay experiments have provided a test bed to study the collective motions of these cytoskeletal filaments and unlocked diverse collective active phases, including states with long-range orientational order. However, it is not well understood how such long-range order emerges from the interplay of passive and active aligning mechanisms. We use Brownian dynamics simulations to study the collective motions of semiflexible filaments that self-propel in quasi-two-dimensions, in order to gain insights into the aligning mechanisms at work in these gliding assay systems. We find that, without aligning torques in the microscopic model, long-range orientational order can only be achieved when the filaments are able to overlap. The symmetry (nematic or polar) of the long-range order that first emerges is shown to depend on the energy cost of filament overlap and on filament flexibility. However, our model also predicts that a long-range-ordered active nematic state is merely transient, whereas long-range polar order is the only active dynamical steady state in systems with finite filament rigidity. 
    more » « less
  2. null (Ed.)
    Many-body interactions in systems of active matter can cause particles to move collectively and self-organize into dynamic structures with long-range order. In cells, the self-assembly of cytoskeletal filaments is critical for cellular motility, structure, intracellular transport, and division. Semiflexible cytoskeletal filaments driven by polymerization or motor-protein interactions on a two-dimensional substrate, such as the cell cortex, can induce filament bending and curvature leading to interesting collective behavior. For example, the bacterial cell-division filament FtsZ is known to have intrinsic curvature that causes it to self-organize into rings and vortices, and recent experiments reconstituting the collective motion of microtubules driven by motor proteins on a surface have observed chiral symmetry breaking of the collective behavior due to motor-induced curvature of the filaments. Previous work on the self-organization of driven filament systems have not studied the effects of curvature and filament structure on collective behavior. In this work, we present Brownian dynamics simulation results of driven semiflexible filaments with intrinsic curvature and investigate how the interplay between filament rigidity and radius of curvature can tune the self-organization behavior in homochiral systems and heterochiral mixtures. We find a curvature-induced reorganization from polar flocks to self-sorted chiral clusters, which is modified by filament flexibility. This transition changes filament transport from ballistic to diffusive at long timescales. 
    more » « less
  3. Dynamic lane formation and long-range active nematic alignment are reported using a geometry in which kinesin motors are directly coupled to a lipid bilayer, allowing for in-plane motor diffusion during microtubule gliding. We use fluorescence microscopy to image protein distributions in and below the dense two-dimensional microtubule layer, revealing evidence of diffusion-enabled kinesin restructuring within the fluid membrane substrate as microtubules collectively glide above. We find that the lipid membrane acts to promote filament–filament alignment within the gliding layer, enhancing the formation of a globally aligned active nematic state. We also report the emergence of an intermediate, locally ordered state in which apolar dynamic lanes of nematically aligned microtubules migrate across the substrate. To understand this emergent behavior, we implement a continuum model obtained from coarse graining a collection of self-propelled rods, with propulsion set by the local motor kinetics. Tuning the microtubule and kinesin concentrations as well as active propulsion in these simulations reveals that increasing motor activity promotes dynamic nematic lane formation. Simulations and experiments show that, following fluid bilayer substrate mediated spatial motor restructuring, the total motor concentration becomes enriched below the microtubule lanes that they drive, with the feedback leading to more dynamic lanes. Our results have implications for membrane-coupled active nematics in vivo as well as for engineering dynamic and reconfigurable materials where the structural elements and power sources can dynamically colocalize, enabling efficient mechanical work. 
    more » « less
  4. Abstract The collective motion observed in living active matter, such as fish schools and bird flocks, is characterized by its dynamic and complex nature, involving various moving states and transitions. By tailoring physical interactions or incorporating information exchange capabilities, inanimate active particles can exhibit similar behavior. However, the lack of synchronous and arbitrary control over individual particles hinders their use as a test system for the study of more intricate collective motions in living species. Herein, a novel optical feedback control system that enables the mimicry of collective motion observed in living objects using active particles is proposed. This system allows for the experimental investigation of the velocity alignment, a seminal model of collective motion (known as the Vicsek model), in a microscale perturbed environment with controllable and realistic conditions. The spontaneous formation of different moving states and dynamic transitions between these states is observed. Additionally, the high robustness of the active‐particle group at the critical density under the influence of different perturbations is quantitatively validated. These findings support the effectiveness of velocity alignment in real perturbed environments, thereby providing a versatile platform for fundamental studies on collective motion and the development of innovative swarm microrobotics. 
    more » « less
  5. null (Ed.)
    In cells, cytoskeletal filament networks are responsible for cell movement, growth, and division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions between motors and filaments lead to larger-scale dynamics remains incompletely understood. To build from motor–filament interactions to predict bulk behavior of cytoskeletal systems, more computationally efficient techniques for modeling motor–filament interactions are needed. Here, we derive a coarse-graining hierarchy of explicit and continuum models for crosslinking motors that bind to and walk on filament pairs. We compare the steady-state motor distribution and motor-induced filament motion for the different models and analyze their computational cost. All three models agree well in the limit of fast motor binding kinetics. Evolving a truncated moment expansion of motor density speeds the computation by 103–106 compared to the explicit or continuous-density simulations, suggesting an approach for more efficient simulation of large networks. These tools facilitate further study of motor–filament networks on micrometer to millimeter length scales. 
    more » « less