This work reports important fundamental advancements in multiwall carbon nanotube (MWCNT) rectenna devices by creating and optimizing new diode structures to allow optical rectification with air‐stable devices. The incorporation of double‐insulator layer tunnel diodes, fabricated for the first time on MWCNT arrays, enables the use of air‐stable top metals (Al and Ag) with excellent asymmetry for rectification applications. Asymmetry is increased by as much as 10 times, demonstrating the effectiveness of incorporating multiple dielectric layers to control electron tunneling in MWCNT diode structures. MWCNT tip opening also reduces device resistance up to 75% due to an increase in diode contact area to MWCNT inner walls. This effect is consistent for different oxide materials and thicknesses. A number of insulator layers, including Al2O3, HfO2, TiO2, ZnO, and ZrO2, in both single‐ and then double‐insulator configurations are tested. Resistance increases exponentially with insulator thickness and decreases with electron affinity. These results are used to characterize double‐insulator diode performance. Finally, for the most asymmetric device structure, Al2O3‐HfO2(4/4 nm), optical rectification at a frequency of 470 THz (638 nm) is demonstrated. These results open the door for designing efficient MWCNT rectenna devices with more material flexibility, including air‐stable, transparent, and conductive top electrode materials.
Hollow Mn3O4nanoparticles (diameter=31 nm, cavity diameter=16 nm, and shell thickness=7 nm) were attached to the surface of multiwall carbon nanotubes (MWCNT). A suspension of hollow Mn3O4/MWCNT with Nafion™ was dropcast onto a glassy carbon electrode, and the electrochemical reduction of oxygen in aqueous solution was investigated with this electrode. We assess the role of MWCNT, hollow Mn3O4, and Nafion™ in the performance of the electrode, and investigate the kinetics of the oxygen reduction reaction. The electrode exhibits outstanding performance in measures of cathodic current density and onset potential, and performed similarly well in acidic, neutral, and alkaline conditions.
more » « less- PAR ID:
- 10223414
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemElectroChem
- Volume:
- 8
- Issue:
- 10
- ISSN:
- 2196-0216
- Page Range / eLocation ID:
- p. 1775-1783
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract As the field of flash sintering expands, more diverse flash processes are emerging that exhibit complex mechanisms and kinetics. Reactive flash sintering studies have been performed using precursor oxides and have yet to explore redox reactions. We show that Mn2O3transforms into Mn3O4during stage III of flash sintering via a moving reaction front, propagating from an electrode if sufficient energy is supplied. The power density and sample temperature increases as the transformation progresses due to the lower resistivity of Mn2O3vs Mn3O4, a secondary thermal runaway effect, further confirming the presence of a transformation front. Additionally, in many studies, the contact resistance is accounted for, but not utilized. The energy for the transformation may either be supplied by the contact resistance–induced Joule heating or the furnace. Room‐temperature impedance measurements demonstrate that Pt electrodes provide substantial contact resistance while Ag electrodes do not. The impedance study demonstrates that it is critical to select the appropriate electrode material to maximize or minimize contact resistance. The contact resistance may be used to create a hot spot and propagate a transformation front in any endothermic reduction reaction that occurs below 950°C in electronic conductors.
-
Abstract Ultrathin mesoporous Ta3N5hollow nanospheres were synthesized via a facile and orchestrated template-free solution-based synthesis followed by thermal nitridation. A systematic investigation of structural evolution with annealing revealed a progressive crystallization with concurrent development of mesoporosity and modification of chemical composition with nitridation time. Subsequent performance of as-prepared photocatalysts were evaluated by the degradation of methylene blue under visible light irradiation (
λ > 400 nm). Ta3N5hollow nanospheres exhibited higher photocatalytic activity than Ta3N5nanorods or bulk Ta3N5, which can be attributed to their engineered structure as well as the oxygen and nitrogen content. -
Abstract Atomically thin, few‐layered membranes of oxides show unique physical and chemical properties compared to their bulk forms. Manganese oxide (Mn3O4) membranes are exfoliated from the naturally occurring mineral Hausmannite and used to make flexible, high‐performance nanogenerators (NGs). An enhanced power density in the membrane NG is observed with the best‐performing device showing a power density of 7.99 mW m−2compared to 1.04 µW m−2in bulk Mn3O4. A sensitivity of 108 mV kPa−1for applied forces <10 N in the membrane NG is observed. The improved performance of these NGs is attributed to enhanced flexoelectric response in a few layers of Mn3O4. Using first‐principles calculations, the flexoelectric coefficients of monolayer and bilayer Mn3O4are found to be 50–100 times larger than other 2D transition metal dichalcogenides (TMDCs). Using a model based on classical beam theory, an increasing activation of the bending mode with decreasing thickness of the oxide membranes is observed, which in turn leads to a large flexoelectric response. As a proof‐of‐concept, flexible NGs using exfoliated Mn3O4membranes are made and used in self‐powered paper‐based devices. This research paves the way for the exploration of few‐layered membranes of other centrosymmetric oxides for application as energy harvesters.
-
Abstract Reactive flash sintering has been demonstrated as a method to rapidly densify and synthesize ceramic materials, but determining the extent of chemical reactions can be complex since the maximum temperature reached by the sample may be brief in time. The black body radiation (BBR) model has been shown to accurately predict the sample temperature during the steady state of flash (stage III). This work demonstrates situations where the BBR model alone does not accurately predict when a phase transformation will occur. We examine the model reactions of CuO reduction to Cu2O during stage II and Mn2O3reduction to Mn3O4in stage III. In CuO, highly resistive samples result in initially localized current flow, a stochastic process resulting in inhomogeneous heating and error in the BBR model during stage II. CuO reduction does not occur in constant heating rate experiments with 6.25 V/mm fields, even though the sample temperature momentarily exceeds the phase transformation temperature. Increased furnace heating to 950°C before application of a field is required to drive the transition. In Mn2O3, the calculated sample temperature of the gauge is less than the transformation temperature, but localized heating at the contact will exceed the transformation temperature, causing the transformation to propagate away from the electrode during stage III. This work demonstrates two forms of inhomogeneity (local, stochastic current flow, and local contact resistance) that result in a complex thermal profile of the sample. This profile should be interrogated to understand reaction kinetics, and can be beneficial when engineered.