skip to main content

Title: Utilization of Remote Access Electron Microscopes to Enhance Technology Education and Foster STEM Interest in Preteen Students
Remote access technology in STEM education fills dual roles as an educational tool to deliver science education (Educational Technology) and as a means to teach about technology itself (Technology Education). A five-lesson sequence was introduced to 11 and 12-year-old students at an urban school. The lesson sequences were inquiry-based, hands-on, and utilized active learning pedagogies, which have been implemented in STEM classrooms worldwide. Each lesson employed a scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) accessed remotely. Students were assessed using multiple-choice questions to ascertain (1) technology education learning gains: did students gain an understanding of how electron microscopes work? and (2) educational technology learning gains: did students gain a better understanding of lesson content through use of the electron microscope? Likert-item surveys were developed, distributed, and analyzed to established how remote access technology affected student attitudes toward science, college, and technology. Participating students had a positive increase in attitudes toward scientific technology by engaging in the lesson sequences, reported positive attitudes toward remote access experiences, and exhibited learning gains in the science behind the SEM technology they accessed remotely. These findings suggest that remote experiences are a strong form of technology education, but also that future research could more » explore ways to strengthen remote access as an educational technology (a tool to deliver lesson content), such as one-on-one engagement. This study promotes future research into inquiry-based, hands-on, integrated lessons approach that utilize educational technology learning through remote instruments as a pedagogy to increase students’ engagement with and learning of the T in STEM. « less
Authors:
; ; ; ; ;
Award ID(s):
2000281
Publication Date:
NSF-PAR ID:
10223443
Journal Name:
Research in Science Education
ISSN:
0157-244X
Sponsoring Org:
National Science Foundation
More Like this
  1. Use of geospatial technology in higher education facilitates student engagement, promotes deeper understanding of material, and supports inquiry-based learning. However, technology must be applied strategically to generate optimal results. While use of web-based interactive modules and short video are constructive in curriculum, it is beneficial to combine this with exposure to hands-on, experimental, field-based technologies. Experiential learning with technology in the physical environment allows students to understand both the challenges and achievements of scientific investigation. This creates a more comprehensive understanding of science as an iterative process of experimentation and investigation and enrichens course material. This paper explores the uniquely advantageous opportunity Geography educators have to combine classroom-based technology with field-based educational experiences. Classroom use of Geographic Information Systems (GIS) and Remotely Sensed data is increasingly accessible with abundant free educational resources. In addition, field-based use of technology can promote location awareness and spatial critical thinking with the use of GPS-based activities. GPS-based educational units also highlight the growing field of citizen science and can be designed as service-based learning opportunities. Use of highly affordable micro unmanned aerial vehicles (UAV) demonstrates data collection procedures. In addition, exposure to Surveying techniques and the field of Geomatics highlights real-world applications of geographicmore »technology. We discuss the use of geospatial technologies in introductory and advanced higher education courses and examine how technology can encourage access to scientific inquiry throughout the student population.« less
  2. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6].more »The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley.« less
  3. This project was designed to address three major challenges faced by undergraduate engineering students (UES) and pre-service teachers (PSTs): 1) retention for UESs after the first year, and continued engagement when they reach more difficult concepts, 2) to prepare PSTs to teach engineering, which is a requirement in the Next Generation Science Standards as well as many state level standards of learning, and 3) to prepare both groups of students to communicate and collaborate in a multi-disciplinary context, which is a necessary skill in their future places of work. This project was implemented in three pairs of classes: 1) an introductory mechanical engineering class, fulfilling a general education requirement for information literacy and a foundations class in education, 2) fluid mechanics in mechanical engineering technology and a science methods class in education, and 3) mechanical engineering courses requiring programming (e.g., computational methods and robotics) with an educational technology class. All collaborations taught elementary level students (4th or 5th grade). For collaborations 1 and 2, the elementary students came to campus for a field trip where they toured engineering labs and participated in a one hour lesson taught by both the UESs and PSTs. In collaboration 3, the UESs and PSTsmore »worked with the upper-elementary students in their school during an after school club. In collaborations 1 and 2, students were assigned to teams and worked remotely on some parts of the project. A collaboration tool, built in Google Sites and Google Drive, was used to facilitate the project completion. The collaboration tool includes a team repository for all the project documents and templates. Students in collaboration 3 worked together directly during class time on smaller assignments. In all three collaborations lesson plans were implemented using the BSCS 5E instructional model, which was aligned to the engineering design process. Instruments were developed to assess knowledge in collaborations 1 (engineering design process) and 3 (computational thinking), while in collaboration 2, knowledge was assessed with questions from the fundamentals of engineering exam and a science content assessment. Comprehensive Assessment of Team Member Effectiveness (CATME) was also used in all 3 collaborations to assess teamwork across the collaborations. Finally, each student wrote a reflection on their experiences, which was used to qualitatively assess the project impact. The results from the first full semester of implementation have led us to improvements in the implementation and instrument refinement for year 2.« less
  4. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences canmore »be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.« less
  5. Abstract Background

    Continuous calls for reform in science education emphasize the need to provide science experiences in lower-division courses to improve the retention of STEM majors and to develop science literacy and STEM skills for all students. Open or authentic inquiry and undergraduate research are effective science experiences leading to multiple gains in student learning and development. Most inquiry-based learning activities, however, are implemented in laboratory classes and the majority of them are guided inquiries. Although course-based undergraduate research experiences have significantly expanded the reach of the traditional apprentice approach, it is still challenging to provide research experiences to nonmajors and in large introductory courses. We examined student learning through a web-based authentic inquiry project implemented in a high-enrollment introductory ecology course for over a decade.

    Results

    Results from 10 years of student self-assessment of learning showed that the authentic inquiry experiences were consistently associated with significant gains in self-perception of interest and understanding and skills of the scientific process for all students—both majors and nonmajors, both lower- and upper-division students, both women and men, and both URM and non-URM students. Student performance in evaluating the quality of an inquiry report, before and after the inquiry project, also showed significant learning gainsmore »for all students. The authentic inquiry experiences proved highly effective for lower-division students, nonmajors, and women and URM students, whose learning gains were similar to or greater than those of their counterparts. The authentic inquiry experiences were particularly helpful to students who were less prepared with regard to the ability to evaluate a scientific report and narrowed the performance gap.

    Conclusions

    These findings suggest that authentic inquiry experiences can serve as an effective approach for engaging students in high-enrollment, introductory science courses. They can facilitate development of science literacy and STEM skills of all students, skills that are critical to students’ personal and professional success and to informed engagement in civic life.

    « less