skip to main content

Title: Physiological demands and signaling associated with snake venom production and storage illustrated by transcriptional analyses of venom glands
Abstract Despite the extensive body of research on snake venom, many facets of snake venom systems, such as the physiology and regulation of the venom gland itself, remain virtually unstudied. Here, we use time series gene expression analyses of the rattlesnake venom gland in comparison with several non-venom tissues to characterize physiological and cellular processes associated with venom production and to highlight key distinctions of venom gland cellular and physiological function. We find consistent evidence for activation of stress response pathways in the venom gland, suggesting that mitigation of cellular stress is a crucial component of venom production. Additionally, we demonstrate evidence for an unappreciated degree of cellular and secretory activity in the steady state venom gland relative to other secretory tissues and identify vacuolar ATPases as the likely mechanisms driving acidification of the venom gland lumen during venom production and storage.
; ; ; ;
Award ID(s):
1655735 1655571
Publication Date:
Journal Name:
Scientific Reports
Sponsoring Org:
National Science Foundation
More Like this
  1. The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy’s gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families—three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)—dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual’s toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7–11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the firstmore »Duvernoy’s gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms.« less
  2. The same selective forces that give rise to rapid inter- and intraspecific divergence in snake venoms can also favor differences in venoms across life-history stages. Ontogenetic changes in venom composition are well known and widespread in snakes but have not been investigated to the level of unambiguously identifying the specific loci involved. The eastern diamondback rattlesnake was previously shown to undergo an ontogenetic shift in venom composition at sexual maturity, and this shift accounted for more venom variation than geography. To characterize the genetics underlying the ontogenetic venom compositional change inC. adamanteus, we sequenced adult/juvenile pairs of venom-gland transcriptomes from five populations previously shown to have different adult venom compositions. We identified a total of 59 putative toxin transcripts for C. adamanteus, and 12 of these were involved in the ontogenetic change. Three toxins were downregulated, and nine were upregulated in adults relative to juveniles. Adults and juveniles expressed similar total levels of snake-venom metalloproteinases but differed substantially in their featured paralogs, and adults expressed higher levels of Bradykinin-potentiating and C-type natriuretic peptides, nerve growth factor, and specific paralogs of phospholipases A2and snake venom serine proteinases. Juvenile venom was more toxic to mice, indicating that the expression differences resulted inmore »a phenotypically, and therefore potentially ecologically, significant difference in venom function. We also showed that adult and juvenile venom-gland transcriptomes for a species with known ontogenetic venom variation were equally effective at individually providing a full characterization of the venom genes of a species but that any particular individual was likely to lack several toxins in their transcriptome. A full characterization of a species’ venom-gene complement therefore requires sequencing more than one individual, although the ages of the individuals are unimportant.

    « less
  3. Abstract

    Changes in gene expression can rapidly influence adaptive traits in the early stages of lineage diversification. Venom is an adaptive trait comprised of numerous toxins used for prey capture and defense. Snake venoms can vary widely between conspecific populations, but the influence of lineage diversification on such compositional differences are unknown. To explore venom differentiation in the early stages of lineage diversification, we used RNA-seq and mass spectrometry to characterize Sidewinder Rattlesnake (Crotalus cerastes) venom. We generated the first venom-gland transcriptomes and complementary venom proteomes for eight individuals collected across the United States and tested for expression differences across life history traits and between subspecific, mitochondrial, and phylotranscriptomic hypotheses. Sidewinder venom was comprised primarily of hemorrhagic toxins, with few cases of differential expression attributable to life history or lineage hypotheses. However, phylotranscriptomic lineage comparisons more than doubled instances of significant expression differences compared to all other factors. Nevertheless, only 6.4% of toxins were differentially expressed overall, suggesting that shallow divergence has not led to major changes in Sidewinder venom composition. Our results demonstrate the need for consensus venom-gland transcriptomes based on multiple individuals and highlight the potential for discrepancies in differential expression between different phylogenetic hypotheses.

  4. ABSTRACT The venom glands of reptiles, particularly those of front-fanged advanced snakes, must satisfy conflicting biological demands: rapid synthesis of potentially labile and highly toxic proteins, storage in the gland lumen for long periods, stabilization of the stored secretions, immediate activation of toxins upon deployment and protection of the animal from the toxic effects of its own venom. This dynamic system could serve as a model for the study of a variety of different phenomena involving exocrine gland activation, protein synthesis, stabilization of protein products and secretory mechanisms. However, these studies have been hampered by a lack of a long-term model that can be propagated in the lab (as opposed to whole-animal studies). Numerous attempts have been made to extend the lifetime of venom gland secretory cells, but only recently has an organoid model been shown to have the requisite qualities of recapitulation of the native system, self-propagation and long-term viability (>1 year). A tractable model is now available for myriad cell- and molecular-level studies of venom glands, protein synthesis and secretion. However, venom glands of reptiles are not identical, and many differ very extensively in overall architecture, microanatomy and protein products produced. This Review summarizes the similarities among and differencesmore »between venom glands of helodermatid lizards and of rear-fanged and front-fanged snakes, highlighting those areas that are well understood and identifying areas where future studies can fill in significant gaps in knowledge of these ancient, yet fascinating systems.« less
  5. Ontogenetic changes in venom composition have been described in Bothrops snakes, but only a few studies have attempted to identify the targeted paralogues or the molecular mechanisms involved in modifications of gene expression during ontogeny. In this study, we decoded B. jararacussu venom gland transcripts from six specimens of varying sizes and analyzed the variability in the composition of independent venom proteomes from 19 individuals. We identified 125 distinct putative toxin transcripts, and of these, 73 were detected in venom proteomes and only 10 were involved in the ontogenetic changes. Ontogenetic variability was linearly related to snake size and did not correspond to the maturation of the reproductive stage. Changes in the transcriptome were highly predictive of changes in the venom proteome. The basic myotoxic phospholipases A2 (PLA2s) were the most abundant components in larger snakes, while in venoms from smaller snakes, PIII-class SVMPs were the major components. The snake venom metalloproteinases (SVMPs) identified corresponded to novel sequences and conferred higher pro-coagulant and hemorrhagic functions to the venom of small snakes. The mechanisms modulating venom variability are predominantly related to transcriptional events and may consist of an advantage of higher hematotoxicity and more efficient predatory function in the venom frommore »small snakes.« less