skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Networks for Learning Counterfactual G-Invariances from Single Environments
Despite ---or maybe because of--- their astonishing capacity to fit data, neural networks are believed to have difficulties extrapolating beyond training data distribution. This work shows that, for extrapolations based on finite transformation groups, a model's inability to extrapolate is unrelated to its capacity. Rather, the shortcoming is inherited from a learning hypothesis: Examples not explicitly observed with infinitely many training examples have underspecified outcomes in the learner’s model. In order to endow neural networks with the ability to extrapolate over group transformations, we introduce a learning framework counterfactually-guided by the learning hypothesis that any group invariance to (known) transformation groups is mandatory even without evidence, unless the learner deems it inconsistent with the training data.  more » « less
Award ID(s):
1943364
PAR ID:
10223638
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ICLR
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite —or maybe because of— their astonishing capacity to fit data, neural networks are believed to have difficulties extrapolating beyond training data distribution. This work shows that, for extrapolations based on finite transformation groups, a model’s inability to extrapolate is unrelated to its capacity. Rather, the shortcoming is inherited from a learning hypothesis: Examples not explicitly observed with infinitely many training examples have underspecified outcomes in the learner’s model. In order to endow neural networks with the ability to extrapolate over group transformations, we introduce a learning framework counterfactually-guided by the learning hypothesis that any group invariance to (known) transformation groups is mandatory even without evidence, unless the learner deems it inconsistent with the training data. Unlike existing invariance-driven methods for (counterfactual) extrapolations, this framework allows extrapolations from a single environment. Finally, we introduce sequence and image extrapolation tasks that validate our framework and showcase the shortcomings of traditional approaches. 
    more » « less
  2. null (Ed.)
    We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while feedforward neural networks, a.k.a. multilayer perceptrons (MLPs), do not extrapolate well in certain simple tasks, Graph Neural Networks (GNNs) – structured networks with MLP modules – have shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most nonlinear functions. But, they can provably learn a linear target function when the training distribution is sufficiently “diverse”. Second, in connection to analyzing the successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of over-parameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings. 
    more » « less
  3. We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while feedforward neural networks, a.k.a. multilayer perceptrons (MLPs), do not extrapolate well in certain simple tasks, Graph Neural Networks (GNNs) – structured networks with MLP modules – have shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most nonlinear functions. But, they can provably learn a linear target function when the training distribution is sufficiently “diverse”. Second, in connection to analyzing the successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of over-parameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings. 
    more » « less
  4. We give the first provably efficient algorithms for learning neural networks with distribution shift. We work in the Testable Learning with Distribution Shift framework (TDS learning) of Klivans et al. (2024), where the learner receives labeled examples from a training distribution and unlabeled examples from a test distribution and must either output a hypothesis with low test error or reject if distribution shift is detected. No assumptions are made on the test distribution. All prior work in TDS learning focuses on classification, while here we must handle the setting of nonconvex regression. Our results apply to real-valued networks with arbitrary Lipschitz activations and work whenever the training distribution has strictly sub-exponential tails. For training distributions that are bounded and hypercontractive, we give a fully polynomial-time algorithm for TDS learning one hidden-layer networks with sigmoid activations. We achieve this by importing classical kernel methods into the TDS framework using data-dependent feature maps and a type of kernel matrix that couples samples from both train and test distributions. 
    more » « less
  5. Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individually. We present, in this paper, a roto-scale-translation equivariant CNN (RST -CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group convolutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RST equivariance, i.e., the RST symmetry is still “approximately” preserved when the transformation is “contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data. 
    more » « less