skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Base pairing, structural and functional insights into N4-methylcytidine (m4C) and N4,N4-dimethylcytidine (m42C) modified RNA
Abstract The N4-methylation of cytidine (m4C and m42C) in RNA plays important roles in both bacterial and eukaryotic cells. In this work, we synthesized a series of m4C and m42C modified RNA oligonucleotides, conducted their base pairing and bioactivity studies, and solved three new crystal structures of the RNA duplexes containing these two modifications. Our thermostability and X-ray crystallography studies, together with the molecular dynamic simulation studies, demonstrated that m4C retains a regular C:G base pairing pattern in RNA duplex and has a relatively small effect on its base pairing stability and specificity. By contrast, the m42C modification disrupts the C:G pair and significantly decreases the duplex stability through a conformational shift of native Watson-Crick pair to a wobble-like pattern with the formation of two hydrogen bonds. This double-methylated m42C also results in the loss of base pairing discrimination between C:G and other mismatched pairs like C:A, C:T and C:C. The biochemical investigation of these two modified residues in the reverse transcription model shows that both mono- or di-methylated cytosine bases could specify the C:T pair and induce the G to T mutation using HIV-1 RT. In the presence of other reverse transcriptases with higher fidelity like AMV-RT, the methylation could either retain the normal nucleotide incorporation or completely inhibit the DNA synthesis. These results indicate the methylation at N4-position of cytidine is a molecular mechanism to fine tune base pairing specificity and affect the coding efficiency and fidelity during gene replication.  more » « less
Award ID(s):
1845486 1715234
PAR ID:
10223807
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
48
Issue:
18
ISSN:
0305-1048
Page Range / eLocation ID:
10087 to 10100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Inosine is an important RNA modification, furthermore RNA oxidation has gained interest due, in part, to its potential role in the development/progression of disease as well as on its impact on RNA structure and function. In this report we established the base pairing abilities of purine nucleobases G, I, A, as well as their corresponding, 8‐oxo‐7,8‐dihydropurine (common products of oxidation at the C8‐position of purines), and 8‐bromopurine (as probes to explore conformational changes), derivatives, namely 8‐oxoG, 8‐oxoI, 8‐oxoA, 8‐BrG, and 8‐BrI. Dodecamers of RNA were obtained using standard phosphoramidite chemistry via solid‐phase synthesis, and used as models to establish the impact that each of these nucleobases have on the thermal stability of duplexes, when base pairing to canonical and noncanonical nucleobases. Thermal stabilities were obtained from thermal denaturation transition (Tm) measurements, via circular dichroism (CD). The results were then rationalized using models of base pairs between two monomers, via density functional theory (DFT), that allowed us to better understand potential contributions from H‐bonding patterns arising from distinct conformations. Overall, some of the important results indicate that: (a) an anti‐I:syn‐A base pair provides thermal stability, due to the absence of the exocyclic amine; (b) 8‐oxoG base pairs like U, and does not induce destabilization within the duplex when compared to the pyrimidine ring; (c) a U:G wobble‐pair is only stabilized by G; and (d) 8‐oxoA displays an inherited base pairing promiscuity in this sequence context. Gaining a better understanding of how this oxidatively generated lesions potentially base pair with other nucleobases will be useful to predict various biological outcomes, as well as in the design of biomaterials and/or nucleotide derivatives with biological potential. 
    more » « less
  2. MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the ‘seed’ region of the miRNA and its counterpart mRNA1. Here we use R1ρ relaxation-dispersion nuclear magnetic resonance2 and molecular simulations3 to reveal a dynamic switch—based on the rearrangement of a single base pair in the miRNA–mRNA duplex—that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago4,5. Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA–mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial ‘screening’ state to an ‘active’ state, and unveil the role of the RNA duplex beyond the seed in Ago2. 
    more » « less
  3. Genetic information is encoded in the DNA double helix, which, in its physiological milieu, is characterized by the iconical Watson-Crick nucleo-base pairing. Recent NMR relaxation experiments revealed the transient presence of an alternative, Hoogsteen (HG) base pairing pattern in naked DNA duplexes, and estimated its relative stability and lifetime. In contrast with DNA, such structures were not observed in RNA duplexes. Understanding HG base pairing is important because the underlying "breathing" motion between the two conformations can significantly modulate protein binding. However, a detailed mechanistic insight into the transition pathways and kinetics is still missing. We performed enhanced sampling simulation (with combined metadynamics and adaptive force-bias method) and Markov state modeling to obtain accurate free energy, kinetics, and the intermediates in the transition pathway between Watson-Crick and HG base pairs for both naked B-DNA and A-RNA duplexes. The Markov state model constructed from our unbiased MD simulation data revealed previously unknown complex extrahelical intermediates in the seemingly simple process of base flipping in B-DNA. Extending our calculation to A-RNA, for which HG base pairing is not observed experimentally, resulted in relatively unstable, single-hydrogen-bonded, distorted Hoogsteen-like bases. Unlike B-DNA, the transition pathway primarily involved base paired and intrahelical intermediates with transition timescales much longer than that of B-DNA. The seemingly obvious flip-over reaction coordinate (i.e., the glycosidic torsion angle) is unable to resolve the intermediates. Instead, a multidimensional picture involving backbone dihedral angles and distance between hydrogen bond donor and acceptor atoms is required to gain insight into the molecular mechanism. 
    more » « less
  4. Direct nanopore-based RNA sequencing can be used to detect posttranscriptional base modifications, such as N6-methyladenosine (m6A) methylation, based on the electric current signals produced by the distinct chemical structures of modified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present Xron, a hybrid encoder–decoder framework that delivers a direct methylation-distinguishing basecaller by training on synthetic RNA data and immunoprecipitation (IP)-based experimental data in two steps. First, we generate data with more diverse modification combinations through in silico cross-linking. Second, we use this data set to train an end-to-end neural network basecaller followed by fine-tuning on IP-based experimental data with label smoothing. The trained neural network basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing signals, enabling de novo methylome assembly. 
    more » « less
  5. DNA duplex stability arises from cooperative interactions between multiple adjacent nucleotides that favor base pairing and stacking when formed as a continuous stretch rather than individually. Lesions and nucleobase modifications alter this stability in complex manners that remain challenging to understand despite their centrality to biology. Here, we investigate how an abasic site destabilizes small DNA duplexes and reshapes base pairing dynamics and hybridization pathways using temperature-jump infrared spectroscopy and coarse-grained molecular dynamics simulations. We show how an abasic site splits the cooperativity in a short duplex into two segments, which destabilizes small duplexes as a whole and enables metastable half-dissociated configurations. Dynamically, it introduces an additional barrier to hybridization by constraining the hybridization mechanism to a step-wise process of nucleating and zipping a stretch on one side of the abasic site and then the other. 
    more » « less