skip to main content


Title: High-resolution Fourier light-field microscopy for volumetric multi-color live-cell imaging

Volumetric interrogation of the organization and processes of intracellular organelles and molecules in cellular systems with a high spatiotemporal resolution is essential for understanding cell physiology, development, and pathology. Here, we report high-resolution Fourier light-field microscopy (HR-FLFM) for fast and volumetric live-cell imaging. HR-FLFM transforms conventional cell microscopy and enables exploration of less accessible spatiotemporal-limiting regimes for single-cell studies. The results present a near-diffraction-limited resolution in all three dimensions, a five-fold extended focal depth to several micrometers, and a scanning-free volume acquisition time up to milliseconds. The system demonstrates instrumentation accessibility, low photo damage for continuous observation, and high compatibility with general cell assays. We anticipate HR-FLFM to offer a promising methodological pathway for investigating a wide range of intracellular processes and functions with exquisite spatiotemporal contextual details.

 
more » « less
Award ID(s):
1830941
NSF-PAR ID:
10224057
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
5
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Live-cell imaging reveals the phenotypes and mechanisms of cellular function and their dysfunction that underscore cell physiology, development, and pathology. Here, we report a 3D super-resolution live-cell microscopy method by integrating radiality analysis and Fourier light-field microscopy (rad-FLFM). We demonstrated the method using various live-cell specimens, including actins in Hela cells, microtubules in mammary organoid cells, and peroxisomes in COS-7 cells. Compared with conventional wide-field microscopy,rad-FLFM realizes scanning-free, volumetric 3D live-cell imaging with sub-diffraction-limited resolution of ∼150 nm (x-y) and 300 nm (z), milliseconds volume acquisition time, six-fold extended depth of focus of ∼6 µm, and low photodamage. The method provides a promising avenue to explore spatiotemporal-challenging subcellular processes in a wide range of cell biological research.

     
    more » « less
  2. Abstract

    Recent developments such as multi-harmonic Atomic Force Microscopy (AFM) techniques have enabled fast, quantitative mapping of nanomechanical properties of living cells. Due to their high spatiotemporal resolution, these methods provide new insights into changes of mechanical properties of subcellular structures due to disease or drug response. Here, we propose three new improvements to significantly improve the resolution, identification, and mechanical property quantification of sub-cellular and sub-nuclear structures using multi-harmonic AFM on living cells. First, microcantilever tips are streamlined using long-carbon tips to minimize long-range hydrodynamic interactions with the cell surface, to enhance the spatial resolution of nanomechanical maps and minimize hydrodynamic artifacts. Second, simultaneous Spinning Disk Confocal Microscopy (SDC) with live-cell fluorescent markers enables the unambiguous correlation between observed heterogeneities in nanomechanical maps with subcellular structures. Third, computational approaches are then used to estimate the mechanical properties of sub-nuclear structures. Results are demonstrated on living NIH 3T3 fibroblasts and breast cancer MDA-MB-231 cells, where properties of nucleoli, a deep intracellular structure, were assessed. The integrated approach opens the door to study the mechanobiology of sub-cellular structures during disease or drug response.

     
    more » « less
  3. Abstract

    Intracellular access with high spatiotemporal resolution can enhance the understanding of how neurons or cardiomyocytes regulate and orchestrate network activity and how this activity can be affected with pharmacology or other interventional modalities. Nanoscale devices often employ electroporation to transiently permeate the cell membrane and record intracellular potentials, which tend to decrease rapidly with time. Here, one reports innovative scalable, vertical, ultrasharp nanowire arrays that are individually addressable to enable long‐term, native recordings of intracellular potentials. One reports electrophysiological recordings that are indicative of intracellular access from 3D tissue‐like networks of neurons and cardiomyocytes across recording days and that do not decrease to extracellular amplitudes for the duration of the recording of several minutes. The findings are validated with cross‐sectional microscopy, pharmacology, and electrical interventions. The experiments and simulations demonstrate that the individual electrical addressability of nanowires is necessary for high‐fidelity intracellular electrophysiological recordings. This study advances the understanding of and control over high‐quality multichannel intracellular recordings and paves the way toward predictive, high‐throughput, and low‐cost electrophysiological drug screening platforms.

     
    more » « less
  4. Abstract

    Light-field fluorescence microscopy uniquely provides fast, synchronous volumetric imaging by capturing an extended volume in one snapshot, but often suffers from low contrast due to the background signal generated by its wide-field illumination strategy. We implemented light-field-based selective volume illumination microscopy (SVIM), where illumination is confined to only the volume of interest, removing the background generated from the extraneous sample volume, and dramatically enhancing the image contrast. We demonstrate the capabilities of SVIM by capturing cellular-resolution 3D movies of flowing bacteria in seawater as they colonize their squid symbiotic partner, as well as of the beating heart and brain-wide neural activity in larval zebrafish. These applications demonstrate the breadth of imaging applications that we envision SVIM will enable, in capturing tissue-scale 3D dynamic biological systems at single-cell resolution, fast volumetric rates, and high contrast to reveal the underlying biology.

     
    more » « less
  5. One of the major challenges in large scale optical imaging of neuronal activity is to simultaneously achieve sufficient temporal and spatial resolution across a large volume. Here, we introduce sparse decomposition light-field microscopy (SDLFM), a computational imaging technique based on light-field microscopy (LFM) that takes algorithmic advantage of the high temporal resolution of LFM and the inherent temporal sparsity of spikes to improve effective spatial resolution and signal-to-noise ratios (SNRs). With increased effective spatial resolution and SNRs, neuronal activity at the single-cell level can be recovered over a large volume. We demonstrate the single-cell imaging capability of SDLFM within vivoimaging of neuronal activity of whole brains of larval zebrafish with estimated lateral and axial resolutions of∼<#comment/>3.5µ<#comment/>mand∼<#comment/>7.4µ<#comment/>m, respectively, acquired at volumetric imaging rates up to 50 Hz. We also show that SDLFM increases the quality of neural imaging in adult fruit flies.

     
    more » « less