skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated p-values from single-cell RNA sequencing data
Abstract To investigate molecular mechanisms underlying cell state changes, a crucial analysis is to identify differentially expressed (DE) genes along the pseudotime inferred from single-cell RNA-sequencing data. However, existing methods do not account for pseudotime inference uncertainty, and they have either ill-posedp-values or restrictive models. Here we propose PseudotimeDE, a DE gene identification method that adapts to various pseudotime inference methods, accounts for pseudotime inference uncertainty, and outputs well-calibratedp-values. Comprehensive simulations and real-data applications verify that PseudotimeDE outperforms existing methods in false discovery rate control and power.  more » « less
Award ID(s):
1846216
PAR ID:
10224171
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Genome Biology
Volume:
22
Issue:
1
ISSN:
1474-760X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationModeling single-cell gene expression trends along cell pseudotime is a crucial analysis for exploring biological processes. Most existing methods rely on nonparametric regression models for their flexibility; however, nonparametric models often provide trends too complex to interpret. Other existing methods use interpretable but restrictive models. Since model interpretability and flexibility are both indispensable for understanding biological processes, the single-cell field needs a model that improves the interpretability and largely maintains the flexibility of nonparametric regression models. ResultsHere, we propose the single-cell generalized trend model (scGTM) for capturing a gene’s expression trend, which may be monotone, hill-shaped or valley-shaped, along cell pseudotime. The scGTM has three advantages: (i) it can capture non-monotonic trends that are easy to interpret, (ii) its parameters are biologically interpretable and trend informative, and (iii) it can flexibly accommodate common distributions for modeling gene expression counts. To tackle the complex optimization problems, we use the particle swarm optimization algorithm to find the constrained maximum likelihood estimates for the scGTM parameters. As an application, we analyze several single-cell gene expression datasets using the scGTM and show that scGTM can capture interpretable gene expression trends along cell pseudotime and reveal molecular insights underlying biological processes. Availability and implementationThe Python package scGTM is open-access and available at https://github.com/ElvisCuiHan/scGTM. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Recently, lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes, which allows for the reconstruction of the cell division tree and makes it possible to reconstruct ancestral cell types and trace the origin of each cell type. Meanwhile, trajectory inference methods are widely used to infer cell trajectories and pseudotime in a dynamic process using gene expression data of present-day cells. Here, we present TedSim (single-cell temporal dynamics simulator), which simulates the cell division events from the root cell to present-day cells, simultaneously generating two data modalities for each single cell: the lineage barcode and gene expression data. TedSim is a framework that connects the two problems: lineage tracing and trajectory inference. Using TedSim, we conducted analysis to show that (i) TedSim generates realistic gene expression and barcode data, as well as realistic relationships between these two data modalities; (ii) trajectory inference methods can recover the underlying cell state transition mechanism with balanced cell type compositions; and (iii) integrating gene expression and barcode data can provide more insights into the temporal dynamics in cell differentiation compared to using only one type of data, but better integration methods need to be developed. 
    more » « less
  3. Abstract Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates. 
    more » « less
  4. Abstract BackgroundCells progressing from an early state to a developed state give rise to lineages in cell differentiation. Knowledge of these lineages is central to developmental biology. Each biological lineage corresponds to a trajectory in a dynamical system. Emerging single-cell technologies such as single-cell RNA sequencing can capture molecular abundance in diverse cell types in a developing tissue. Many computational methods have been developed to infer trajectories from single-cell data. However, to our knowledge, none of the existing methods address the problem of determining the existence of a trajectory in observed data before attempting trajectory inference. ResultsWe introduce a method to identify the existence of a trajectory using three graph-based statistics. A permutation test is utilized to calculate the empirical distribution of the test statistic under the null hypothesis that a trajectory does not exist. Finally, ap-value is calculated to quantify the statistical significance for the presence of trajectory in the data. ConclusionsOur work contributes new statistics to assess the level of uncertainty in trajectory inference to increase the understanding of biological system dynamics. 
    more » « less
  5. Schwartz, Russell (Ed.)
    Abstract Motivation Cells in an organism share a common evolutionary history, called cell lineage tree. Cell lineage tree can be inferred from single cell genotypes at genomic variation sites. Cell lineage tree inference from noisy single cell data is a challenging computational problem. Most existing methods for cell lineage tree inference assume uniform uncertainty in genotypes. A key missing aspect is that real single cell data usually has non-uniform uncertainty in individual genotypes. Moreover, existing methods are often sampling based and can be very slow for large data. Results In this article, we propose a new method called ScisTree, which infers cell lineage tree and calls genotypes from noisy single cell genotype data. Different from most existing approaches, ScisTree works with genotype probabilities of individual genotypes (which can be computed by existing single cell genotype callers). ScisTree assumes the infinite sites model. Given uncertain genotypes with individualized probabilities, ScisTree implements a fast heuristic for inferring cell lineage tree and calling the genotypes that allow the so-called perfect phylogeny and maximize the likelihood of the genotypes. Through simulation, we show that ScisTree performs well on the accuracy of inferred trees, and is much more efficient than existing methods. The efficiency of ScisTree enables new applications including imputation of the so-called doublets. Availability and implementation The program ScisTree is available for download at: https://github.com/yufengwudcs/ScisTree. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less