skip to main content


Title: Laboratory Experiments Contrasting Growth of Uniformly and Nonuniformly Spaced Hydraulic Fractures
Abstract

Hydraulic fractures that grow in close proximity to one an other interact and compete for fluid that is injected to the wellbore, leading to dominance of some fractures and suppression of others. This phenomenon is ubiquitously encountered in stimulation of horizontal wells in the petroleum industry and it also bears possible relevance to emplacement of multiple laterally propagating swarms of magma‐driven dykes. Motivated by a need to validate mechanical models, this paper focuses on laboratory experiments and their comparison to simulation results for the behavior of multiple, simultaneously growing hydraulic fractures. The experiments entail the propagation of both uniformly and nonuniformly spaced hydraulic fractures by injection of glucose or glycerin‐based solutions into transparent (polymethyl methacrylate) blocks. Observed fracture growth is then compared to predictions of a fully coupled, parallel‐planar 3D hydraulic fracturing simulator. Results from experiments and simulations confirm the suppression of inner fractures when the spacing between the fractures is uniform. For certain non‐uniform spacing, both experiments and simulations show mitigated suppression of the central fractures. Specifically, the middle fracture in a 5‐fracture array grows nearly equally to the outer fractures from the beginning of injection. Furthermore, with some delay, the other two fractures that are suppressed with uniformly spaced configurations grow, and eventually achieve a velocity exceeding the other three fractures in the array. Hence, these experiments give the first laboratory evidence of a model‐predicted behavior wherein certain nonuniform fracture spacings result in drastic increases in the growth of all fractures within the array.

 
more » « less
Award ID(s):
1645246
NSF-PAR ID:
10450821
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
1
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Distributed acoustic sensing (DAS) was originally intended to measure oscillatory strain at frequencies of 1 Hz or more on a fiber optic cable. Recently, measurements at much lower frequencies have opened the possibility of using DAS as a dynamic strain sensor in boreholes. A fiber optic cable mechanically coupled to a geologic formation will strain in response to hydraulic stresses in pores and fractures. A DAS interrogator can measure dynamic strain in the borehole, which can be related to fluid pressure through the mechanical compliance properties of the formation. Because DAS makes distributed measurements, it is capable of both locating hydraulically active features and quantifying the fluid pressure in the formation. We present field experiments in which a fiber optic cable was mechanically coupled to two crystalline rock boreholes. The formation was stressed hydraulically at another well using alternating injection and pumping. The DAS instrument measured oscillating strain at the location of a fracture zone known to be hydraulically active. Rock displacements of less than 1 nm were measured. Laboratory experiments confirm that displacement is measured correctly. These results suggest that fiber optic cable embedded in geologic formations may be used to map hydraulic connections in three‐dimensional fracture networks. A great advantage of this approach is that strain, an indirect measure of hydraulic stress, can be measured without beforehand knowledge of flowing fractures that intersect boreholes. The technology has obvious applications in water resources, geothermal energy, CO2sequestration, and remediation of groundwater in fractured bedrock.

     
    more » « less
  2. Abstract

    Fluid injection into rock formations can either produce complex branched hydraulic fractures, create simple planar fractures, or be dominated by porous diffusion. Currently, the optimum injection parameters to create branched fractures are unknown. We conducted repeatable hydraulic fracturing experiments using analog‐rock samples with controlled heterogeneity to quantify the fluid parameters that promote fracture branching. A large range of injection rates and fluid viscosities were used to investigate their effects on induced fracture patterns. Paired with a simple analytical model, our results identify the threshold at which fracture transitions from an isolated planar crack to branched cracks when closed natural fractures exist. These results demonstrate that this transition can be controlled by injection rate and fluid viscosity. In relation to the field practices, the present model predicts slickwater and lower viscosity fluid injections promote fracture branching, with the Marcellus shale used as an example.

     
    more » « less
  3. Abstract

    In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.

     
    more » « less
  4. Hydraulic fracturing arises as a method to enhance oil and gas production, and also as a way to recover geothermal energy. It is, therefore, essential to understand how injecting a fluid inside a rock reservoir will affect its surroundings. Hydraulic fracturing processes can be strongly affected by the interaction between two mechanisms: the elastic effects caused by the hydraulic pressure applied inside fractures and the poro-mechanical effects caused by the fluid infiltration inside the porous media (i.e. fluid diffusivity); this, in turn, is affected by the injection rate used. The interaction between poro-elastic mechanisms, particularly the effect of the fluid diffusivity, in the hydraulic fracturing processes is not well-understood and is investigated in this paper. This study aims to experimentally and theoretically comprehend the effects of the injection rate on crack propagation and on pore pressures, when flaws pre-fabricated in prismatic gypsum specimens are hydraulically pressurized. In order to accomplish this, laboratory experiments were performed using two injection rates (2 and 20 ml/min), applied by an apparatus consisting of a pressure enclosure with an impermeable membrane in both faces of the specimen, which allowed one to observe the growth of a fluid front from the pre-fabricated flaws to the unsaturated porous media (i.e. rock), before fracturing took place. It was observed that the fracturing pressures and patterns are injection-rate-dependent. This was interpreted to be caused by the different pore pressures that developed in the rock matrix, which resulted from the significantly distinct fluid fronts observed for the two injection rates tested. 
    more » « less
  5. Abstract

    Hydraulic fracturing enables oil and gas extraction from low‐permeability reservoirs, but there remains a need to reduce the environmental footprint. Resource use, contaminant‐bearing flowback water, and potential for induced seismicity are all scaled by the volume of injected fluid. Furthermore, the greenhouse gas emissions associated with each extracted unit of energy can be decreased by improving resource recovery. To minimize fluid use while maximizing recovery, a rapidly computing model is developed and validated to enable the thousands of simulations needed to identify opportunities for optimization. Lower pumping pressure approaches that minimize pressure loss through the wellbore perforations combined with nonuniform spacing are shown to be capable of substantially reducing fluid consumption and/or increasing created fracture surface area when the stress variation is mainly from fracture interaction instead of in situ stress. When in situ stress variation is dominant, “limited entry” methods promote more uniform growth but with higher pumping pressures and energy consumption.

     
    more » « less