The COVID-19 pandemic severely changed the way of life in the United States (US). From early scattered regional outbreaks to current country-wide spread, and from rural areas to highly populated cities, the contagion exhibits diverse patterns at various timescales and locations. We thus conduct a graph frequency analysis to inves- tigate the spread patterns of COVID-19 in different US counties. The commute flows between all 3142 US counties were used to construct a graph capturing the population mobility. The numbers of daily confirmed COVID-19 cases per county were collected and represented as graph signals, which were then mapped into themore »
Spatial-Temporal Relationship Between Population Mobility and COVID-19 Outbreaks in South Carolina: Time Series Forecasting Analysis
Background Population mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases. Objective The aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19 outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina. Methods This longitudinal study used disease surveillance data and Twitter-based population mobility data from March 6 to November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases. Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson count time series model was employed for COVID-19 forecasting. Results Population mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time window within the last 7 days had more »
- Award ID(s):
- 2028791
- Publication Date:
- NSF-PAR ID:
- 10224207
- Journal Name:
- Journal of Medical Internet Research
- Volume:
- 23
- Issue:
- 4
- Page Range or eLocation-ID:
- e27045
- ISSN:
- 1438-8871
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The objective of this study was to investigate the importance of multiple county-level features in the trajectory of COVID-19. We examined feature importance across 2787 counties in the United States using data-driven machine learning models. Existing mathematical models of disease spread usually focused on the case prediction with different infection rates without incorporating multiple heterogeneous features that could impact the spatial and temporal trajectory of COVID-19. Recognizing this, we trained a data-driven model using 23 features representing six key influencing factors affecting the pandemic spread: social demographics of counties, population activities, mobility within the counties, movement across counties, diseasemore »
-
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyzemore »
-
The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this article is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance ( D v ) and the activity density ( D a ) are used to quantify and evaluate human activities for 193 United States counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure ofmore »
-
Turner, Richard (Ed.)Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated withmore »