Acute infections can alter foraging and movement behaviors relevant to sociality and pathogen spread. However, few studies have directly examined how acute infections caused by directly transmitted pathogens influence host social preferences. While infected hosts often express sickness behaviors (e.g., lethargy) that can reduce social associations with conspecifics, enhanced sociality during infection might be favored in some systems if social grouping improves host survival of infection. Directly assaying social preferences of infected hosts is needed to elucidate potential changes in social preferences that may act as a form of behavioral tolerance (defined as using behavior to minimize fitness costs of infection). We tested how infection alters sociality in juvenile house finches (Haemorhous mexicanus), which are both highly gregarious and particularly susceptible to infection by the bacterial pathogenMycoplasma gallisepticum(MG). We inoculated 33 wild‐caught but captive‐held juvenile house finches with MG or media (sham control). At peak infection, birds were given a choice assay to assess preference for associating near a flock versus an empty cage. We then repeated this assay after all birds had recovered from infection. Infected birds were significantly more likely than controls to spend time associating with, and specifically foraging near, the flock. However, after infected birds had recovered from MG infection, there were no significant differences in the amount of time birds in each treatment spent with the flock. These results indicate augmented social preferences during active infection, potentially as a form of behavioral tolerance. Notably, infected birds showed strong social preferences regardless of variation in disease severity or pathogen loads, with 14/19 harboring high loads (5–6 log10copies of MG) at the time of the assay. Overall, our results show that infection with a directly transmitted pathogen can augment social preferences, with important implications for MG spread in natural populations.
more »
« less
Social partners and temperature jointly affect morning foraging activity of small birds in winter
Abstract Daily foraging activity of small wintering birds is classically thought to be driven by the need to gather enough energy reserves to survive each night. A separate line of research has shown that sociality is a major driver in winter foraging activities in many species. Here, we used wintering birds as a study system to move toward an integrative understanding of the influence of energy requirements and sociality on foraging ecology. We used RFID-enabled feeders in Lincoln, Nebraska, USA in January–March 2019 to measure foraging activity in two species (downy woodpeckers, Dryobates pubescens, and white-breasted nuthatches, Sitta carolinensis). We analyzed the relationship between overnight temperature and morning foraging activity and found that lowest overnight temperature was weakly correlated with morning visitation at feeders. We then used a network approach to ask if flock associations explain similarity in birds’ foraging activity. In both species, individuals with stronger associations in a social network were more likely to share similar feeder activity, and an index of social partners’ activity explained foraging activity better than overnight temperature. This brings forth new questions about the interplay between individual response to temperature and social factors in shaping how small animals cope with harsh winter conditions.
more »
« less
- PAR ID:
- 10224212
- Editor(s):
- Pinter-Wollman, Noa
- Date Published:
- Journal Name:
- Behavioral Ecology
- ISSN:
- 1045-2249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Landscape changes can alter pollinator movement and foraging patterns which can in turn influence the demographic processes of plant populations. We leveraged social network models and four fixed arrays of five hummingbird feeders equipped with radio frequency identification (RFID) data loggers to study rufous hummingbird ( Selasphorus rufus ) foraging patterns in a heterogeneous landscape. Using a space-for-time approach, we asked whether forest encroachment on alpine meadows could restrict hummingbird foraging movements and impede resource discovery. We fit social network models to data on 2221 movements between feeders made by 29 hummingbirds. Movements were made primarily by females, likely due to male territoriality and early migration dates. Distance was the driving factor in determining the rate of movements among feeders. The posterior mean effects of forest landscape variables (local canopy cover and intervening forest cover) were negative, but with considerable uncertainty. Finally, we found strong reciprocity in hummingbird movements, indicative of frequent out and back movements between resources. Together, these findings suggest that reciprocal movements by female hummingbirds could help maintain bidirectional gene flow among nearby subpopulations of ornithophilous plants; however, if the distance among meadows increases with further forest encroachment, this may limit foraging among progressively isolated meadows.more » « less
-
Abstract BackgroundSince the 1980s, Pacific Black Brant (Branta bernicla nigricans, hereafter brant) have shifted their winter distribution northward from Mexico to Alaska (approximately 4500 km) with changes in climate. Alongside this shift, the primary breeding population of brant has declined. To understand the population-level implications of the changing migration strategy of brant, it is important to connect movement and demographic data. Our objectives were to calculate migratory connectivity, a measure of spatial and temporal overlap during the non-breeding period, for Arctic and subarctic breeding populations of brant, and to determine if variation in migration strategies affected nesting phenology and nest survival. MethodsWe derived a migratory network using light-level geolocator migration tracks from an Arctic site (Colville River Delta) and a subarctic site (Tutakoke River) in Alaska. Using this network, we quantified the migratory connectivity of the two populations during the winter. We also compared nest success rates among brant that used different combinations of winter sites and breeding sites. ResultsThe two breeding populations were well mixed during the winter, as indicated by a migratory connectivity score close to 0 (− 0.06) at the primary wintering sites of Izembek Lagoon, Alaska (n = 11 brant) and Baja California, Mexico (n = 48). However, Arctic birds were more likely to migrate the shorter distance to Izembek (transition probability = 0.24) compared to subarctic birds (transition probability = 0.09). Nest survival for both breeding populations was relatively high (0.88–0.92), and we did not detect an effect of wintering site on nest success the following year. ConclusionsNest survival of brant did not differ among brant that used wintering sites despite a 4500 km difference in migration distances. Our results also suggested that the growing Arctic breeding population is unlikely to compensate for declines in the larger breeding population of brant in the subarctic. However, this study took place in 2011–2014 and wintering at Izembek Lagoon may have greater implications for reproductive success under future climate conditions.more » « less
-
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals’ social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally. This article is part of the discussion meeting issue ‘Understanding age and society using natural populations ’.more » « less
-
Abstract Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace‐of‐life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops.Campylobacterspp. were the most prevalent enteric pathogen (8.0%), whileSalmonellaand Shiga‐toxin producingEscherichia coli(STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically,Campylobacterand STEC‐associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively.Campylobacterwas also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy‐foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest‐eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win‐win‐win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait‐based framework suggests a path forward for co‐managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under‐studied species.more » « less
An official website of the United States government

