skip to main content


Title: Bivariate Kernel Deconvolution with Panel Data
Abstract

We consider estimation of the density of a multivariate response, that is not observed directly but only through measurements contaminated by additive error. Our focus is on the realistic sampling case of bivariate panel data (repeated contaminated bivariate measurements on each sample unit) with an unknown error distribution. Several factors can affect the performance of kernel deconvolution density estimators, including the choice of the kernel and the estimation approach of the unknown error distribution. As the choice of the kernel function is critically important, the class of flat-top kernels can have advantages over more commonly implemented alternatives. We describe different approaches for density estimation with multivariate panel responses, and investigate their performance through simulation. We examine competing kernel functions and describe a flat-top kernel that has not been used in deconvolution problems. Moreover, we study several nonparametric options for estimating the unknown error distribution. Finally, we also provide guidelines to the numerical implementation of kernel deconvolution in higher sampling dimensions.

 
more » « less
NSF-PAR ID:
10224320
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Sankhya B
ISSN:
0976-8386
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the deconvolution problem of estimating a square-integrable probability density from observations contaminated with additive measurement errors having a known density. The estimator begins with a density estimate of the contaminated observations and minimizes a reconstruction error penalized by an integrated squared m-th derivative. Theory for deconvolution has mainly focused on kernel- or wavelet-based techniques, but other methods including spline-based techniques and this smoothnesspenalized estimator have been found to outperform kernel methods in simulation studies. This paper fills in some of these gaps by establishing asymptotic guarantees for the smoothness-penalized approach. Consistency is established in mean integrated squared error, and rates of convergence are derived for Gaussian, Cauchy, and Laplace error densities, attaining some lower bounds already in the literature. The assumptions are weak for most results; the estimator can be used with a broader class of error densities than the deconvoluting kernel. Our application example estimates the density of the mean cytotoxicity of certain bacterial isolates under random sampling; this mean cytotoxicity can only be measured experimentally with additive error, leading to the deconvolution problem. We also describe a method for approximating the solution by a cubic spline, which reduces to a quadratic program. 
    more » « less
  2. Summary

    We develop a general non-parametric approach to the analysis of clustered data via random effects. Assuming only that the link function is known, the regression functions and the distributions of both cluster means and observation errors are treated non-parametrically. Our argument proceeds by viewing the observation error at the cluster mean level as though it were a measurement error in an errors-in-variables problem, and using a deconvolution argument to access the distribution of the cluster mean. A Fourier deconvolution approach could be used if the distribution of the error-in-variables were known. In practice it is unknown, of course, but it can be estimated from repeated measurements, and in this way deconvolution can be achieved in an approximate sense. This argument might be interpreted as implying that large numbers of replicates are necessary for each cluster mean distribution, but that is not so; we avoid this requirement by incorporating statistical smoothing over values of nearby explanatory variables. Empirical rules are developed for the choice of smoothing parameter. Numerical simulations, and an application to real data, demonstrate small sample performance for this package of methodology. We also develop theory establishing statistical consistency.

     
    more » « less
  3. Under the frequency domain framework for weakly dependent functional time series, a key element is the spectral density kernel which encapsulates the second‐order dynamics of the process. We propose a class of spectral density kernel estimators based on the notion of a flat‐top kernel. The new class of estimators employs the inverse Fourier transform of a flat‐top function as the weight function employed to smooth the periodogram. It is shown that using a flat‐top kernel yields a bias reduction and results in a higher‐order accuracy in terms of optimizing the integrated mean square error (IMSE). Notably, the higher‐order accuracy of flat‐top estimation comes at the sacrifice of the positive semi‐definite property. Nevertheless, we show how a flat‐top estimator can be modified to become positive semi‐definite (even strictly positive definite) in finite samples while retaining its favorable asymptotic properties. In addition, we introduce a data‐driven bandwidth selection procedure realized by an automatic inspection of the estimated correlation structure. Our asymptotic results are complemented by a finite‐sample simulation where the higher‐order accuracy of flat‐top estimators is manifested in practice.

     
    more » « less
  4. In this thesis we propose novel estimation techniques for localization and planning problems, which are key challenges in long-term autonomy. We take inspiration in our methods from non-parametric estimation and use tools such as kernel density estimation, non-linear least-squares optimization, binary masking, and random sampling. We show that these methods, by avoiding explicit parametric models, outperform existing methods that use them. Despite the seeming differences between localization and planning, we demonstrate in this thesis that the problems share core structural similarities. When real or simulation-sampled measurements are expensive, noisy, or high variance, non-parametric estimation techniques give higher-quality results in less time. We first address two localization problems. In order to permit localization with a set of ad hoc-placed radios, we propose an ultra-wideband (UWB) graph realization system to localize the radios. Our system achieves high accuracy and robustness by using kernel density estimation for measurement probability densities, by explicitly modeling antenna delays, and by optimizing this combination with a non-linear least squares formulation. Next, in order to then support robotic navigation, we present a flexible system for simultaneous localization and mapping (SLAM) that combines elements from both traditional dense metric SLAM and topological SLAM, using a binary "masking function" to focus attention. This masking function controls which lidar scans are available for loop closures. We provide several masking functions based on approximate topological class detectors. We then examine planning problems in the final chapter and in the appendix. In order to plan with uncertainty around multiple dynamic agents, we describe Monte-Carlo Policy-Tree Decision Making (MCPTDM), a framework for efficiently computing policies in partially-observable, stochastic, continuous problems. MCPTDM composes a sequence of simpler closed-loop policies and uses marginal action costs and particle repetition to improve cost estimates and sample efficiency by reducing variance. Finally, in the appendix we explore Learned Similarity Monte-Carlo Planning (LSMCP), where we seek to enhance the sample efficiency of partially observable Monte Carlo tree search-based planning by taking advantage of similarities in the final outcomes of similar states and actions. We train a multilayer perceptron to learn a similarity function which we then use to enhance value estimates in the planning. Collectively, we show in this thesis that non-parametric methods promote long-term autonomy by reducing error and increasing robustness across multiple domains. 
    more » « less
  5. Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency – given n input points, most kernel-based algorithms need to materialize the full n × n kernel matrix before performing any subsequent computation, thus incurring Ω(n^2) runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain subquadratic time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving lin- ear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recently developed Kernel Density Estimation framework, which (after preprocessing in time subquadratic in n) can return estimates of row/column sums of the kernel matrix. In particular, we de- velop efficient reductions from weighted vertex and weighted edge sampling on kernel graphs, simulating random walks on kernel graphs, and importance sampling on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in sublinear (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsi- fication, where we observe a 9x decrease in the number of kernel evaluations over baselines for LRA and a 41x reduction in the graph size for spectral sparsification. 
    more » « less