skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of parasite exposure on mortality from aquatic contaminants, carbaryl and elevated salinity, in a freshwater crustacean
Abstract Freshwater pollution is a major global concern. Common methods for determining the effects of contaminants on freshwater organisms involve short-term laboratory experiments with otherwise healthy organisms. However, in natural systems, organisms are commonly exposed to parasites, which could alter their ability to survive exposure to aquatic contamination. We used a freshwater crustacean (Daphnia dentifera) to quantify the effects of parasite exposure on mortality from two common freshwater contaminants (elevated salinity [NaCl] and carbaryl). In our salinity trial, both parasite exposure and elevated salinity reduced survival in an additive manner. In our carbaryl trial, exposure to carbaryl reduced survival and we found a less-than-additive (i.e. antagonistic) interaction between carbaryl and the parasite; the parasite only reduced survival in the control (no carbaryl) treatments. Our results demonstrate that parasites and contaminants can jointly affect mortality in aquatic organisms in an additive or less-than-additive manner.  more » « less
Award ID(s):
1856710
PAR ID:
10224419
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Plankton Research
Volume:
42
Issue:
3
ISSN:
0142-7873
Page Range / eLocation ID:
394 to 397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness. 
    more » « less
  2. ABSTRACT Climate change can influence host–parasite dynamics by altering the abundance and distribution of hosts and their parasites as well as the physiology of both parasite and host. While the physiological effects of hosting parasites have been extensively studied in aquatic and laboratory model systems, these dynamics have been much less studied in wild terrestrial vertebrates, such as ectotherms that live in tropical forests. These organisms are particularly vulnerable to climate change because they have limited scope for behavioral buffering of stressful temperatures while already living at body temperatures close to their heat tolerance limits. Thus, it is imperative to understand how parasitism and tolerance to stressful thermal conditions, both of which are changing under climate warming, might interact to shape survival of non-model organisms. We measured heat tolerance and assessed endoparasites and ectoparasites in slender anole lizards (Anolis apletophallus; a lowland tropical forest species from central Panama). We then treated lizards with the antiparasitic drugs ivermectin and praziquantel and measured changes in immune function and heat tolerance compared with an unmanipulated control group. Immune function was not altered by treatment; however, heat tolerance increased in treated lizards. Additionally, higher endoparasite and ectoparasite abundance was associated with lower heat tolerance in a separate set of wild-caught lizards. Our results suggest that increasing environmental temperatures may have especially severe effects on host survival when parasites are present and highlight the need to consider interactions between thermal physiology and host–parasite dynamics when forecasting the responses of tropical animals to climate change. 
    more » « less
  3. Nanoparticles are man-made materials defined as materials smaller than 100 nm in at least one dimension. Titanium oxide nanoparticles are of great interest because of their extensive use in self-care products. There is a lack of nanotoxicological studies of TiO2 NPs in benthic organisms to have evidence about the effects of these pollutants in freshwater ecosystems. Atya lanipes is a scraper/filter that can provide a good nanotoxicological model. This study aims to determine how the TiO2 NPs can develop a toxic effect in the larvae of the Atya lanipes shrimp and to document lethal and sublethal effects after acute exposures to TiO2 NP suspensions of: 0.0, 1.0, 10.0, 50.0, 100.0, and 150.0 mg/L. The results show that early exposure to TiO2 NPs in Atya lanipes creates an increase in mortality at 48 and 72 h exposures, hypoactivity in movements, and morphological changes, such as less pigmentation and the presence of edema in exposed larvae. In conclusion, TiO2 NPs are toxic contaminants in the larval stage of the Atya lanipes. It is necessary to regulate these nanoparticles for purposes of the conservation of aquatic biodiversity, especially for freshwater shrimp larvae and likely many other larvae of filter-feeding species. 
    more » « less
  4. ABSTRACT Rapid warming could drastically alter host–parasite relationships, which is especially important for fisheries crucial to human nutrition and economic livelihoods, yet we lack a synthetic understanding of how warming influences parasite‐induced mortality in these systems. We conducted a meta‐analysis using 266 effect sizes from 52 empirical papers on harvested aquatic species and determined the relationship between parasite‐induced host mortality and temperature and how this relationship was altered by host, parasite, and study design traits. Overall, higher temperatures increased parasite‐induced host mortality; however, the magnitude of this relationship varied. Hosts from the order Salmoniformes experienced a greater increase in parasite‐induced mortality with temperature than the average response to temperature across fish orders. Opportunistic parasites were associated with a greater increase in infected host mortality with temperature than the average across parasite strategies, while bacterial parasites were associated with lower infected host mortality as temperature increased than the average across parasite types. Thus, parasites will generally increase host mortality as the environment warms; however, this effect will vary among systems. 
    more » « less
  5. Abstract Laboratory assays show that parasites often have lower heat tolerance than their hosts. But how physiological tolerances and behavioral responses of hosts and parasites combine to affect their ecological interactions in heterogeneous field environments is largely unknown. We addressed this challenge using the model insect system of the braconid wasp parasitoid,Cotesia congregata, and its caterpillar host,Manduca sexta. We used experimental manipulations of microclimate in the field to determine how elevated daytime temperatures altered the behavior, performance, and survival of host and parasite. Our experimental manipulation increased daily maximum temperatures on host plants, but had negligible effects on overall mean temperature. These increased maximum temperatures resulted in subtle, biologically relevant, changes in physiology and behavior of the host and parasitoid. We found that parasitism by the wasp did not significantly alter caterpillar thermoregulatory behavior, while experimentally increased daily maximum temperatures resulted in both parasitized and unparasitized caterpillars to be found more frequently in cooler microhabitats. Overall, we did not observe the complete parasitoid mortality seen at extreme temperatures in laboratory studies, but gained insight into the sublethal effects of increased daily maximum temperatures on host and parasitoid behavior and physiology. Climate change will alter both the biotic and abiotic environments that organisms face, and we show here that empirical experiments in the field are important for understanding organismal response to these new environments. 
    more » « less