skip to main content


Title: Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides
The ability of zero-mode waveguides (ZMW) to guide light into subwavelength-diameter nanoapertures has been exploited for studying electron transfer dynamics in zeptoliter-volume nanopores under single-molecule occupancy conditions. In this work, we report the spectroelectrochemical detection of individual molecules of the redox-active, fluorogenic molecule flavin mononucleotide (FMN) freely diffusing in solution. Our approach is based on an array of nanopore-confined recessed dual ring electrodes, wherein repeated reduction and oxidation of a single molecule at two closely spaced annular working electrodes yields amplified electrochemical signals. We have articulated these structures with an optically transparent bottom, so that the nanopores are bifunctional, exhibiting both nanophotonic and nanoelectrochemical behaviors allowing the coupling between electron transfer and fluorescence dynamics to be studied under redox cycling conditions. We also investigated the electric field intensity in electrochemical ZMWs (E-ZMW) through finite-element simulations, and the amplification of fluorescence by redox cycling agrees well with predictions based on optical confinement effects inside the E-ZMW. Proof-of-principle experiments are conducted showing that electrochemical and fluorescence signals may be correlated to reveal single molecule fluctuations in the array population. Cross-correlation of single molecule fluctuations in amperometric response and single photon emission provides unequivocal evidence of single molecule sensitivity.  more » « less
Award ID(s):
1404744
PAR ID:
10224451
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
8
Issue:
8
ISSN:
2041-6520
Page Range / eLocation ID:
5345 to 5355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ∼30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+ /tri- n -propylamine on the floating bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3 ) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling. 
    more » « less
  2. Zero-mode waveguides (ZMW) have the potential to be powerful confinement tools for studying electron transfer dynamics at single molecule occupancy conditions. Flavin mononucleotide contains an isoalloxazine chromophore, which is fluorescent in the oxidized state (FMN) while the reduced state (FMNH 2 ) exhibits dramatically lower light emission, i.e. a dark-state. This allows fluorescence emission to report the redox state of single FMN molecules, an observation that has been used previously to study single electron transfer events in surface-immobilized flavins and flavoenzymes, e.g. sarcosine oxidase, by direct wide-field imaging of ZMW arrays. Single molecule electron transfer dynamics have now been extended to the study of freely diffusing molecules using fluorescence measurements of Au ZMWs under single occupancy conditions. The Au in the ZMW serves both as an optical cladding layer and as the working electrode for potential control, thereby accessing single molecule electron transfer dynamics at μM concentrations. Consistent with expectations, the probability of observing single reduced molecules increases as the potential is scanned negative, E appl < E eq , and the probability of observing emitting oxidized molecules increases at E appl > E eq . Different single molecules exhibit different electron transfer properties as reflected in the position of E eq and the distribution of E eq among a population of FMN molecules. Two types of actively-controlled electroluminescence experiments were used: chronofluorometry experiments, in which the potential is alternately stepped between oxidizing and reducing potentials, and cyclic potential sweep fluorescence experiments, analogous to cyclic voltammetry, these latter experiments exhibiting a dramatic scan rate dependence with the slowest scan rates showing distinct intermediate states that are stable over a range of potentials. These states are assigned to flavosemiquinone species that are stabilized in the special environment of the ZMW nanopore. 
    more » « less
  3. Abstract

    In this paper, we highlight the uniqueness of nanoporous film‐coated electrodes as electrochemical sensing platforms. Specifically, we focus on discussing electrodes coated with insulator‐based monolithic films comprising vertically‐oriented, rigid cylindrical nanopores of uniform diameters (2–200 nm). The electrode coating results in the formation of an array of recessed nanodisk electrodes, and thus we named them recessed nanodisk‐array electrodes (RNEs). We first summarize the properties of nanoporous films commonly used for RNE fabrication, including nanoporous anodic alumina membranes, track‐etched polymer membranes, block copolymer‐derived nanoporous films, and mesoporous silica films. Subsequently, we discuss representative works that take advantage of the uniform size/shape of the nanopores for enhancing electrochemical detection selectivity and sensitivity. RNE‐based sensors measure faradaic currents from redox‐active analytes or exogenously‐added electroactive species that penetrate through the nanopores, or those from redox‐active moieties tethered to the surface of the nanopores or underlying electrodes. The enhanced detection selectivity of these sensors is attributed to the preferential partitioning of analytes into the nanopores or steric/electrostatic exclusion of interfering species. In particular, the uniform sizes/shapes of RNE nanopores play key roles in their higher molecular sieving selectivity and also in the better control of the detection selectivity based on electrostatic/chemical interactions. The detection sensitivity of RNE‐based sensors can be improved by tailoring the chemical environments of the nanopores for analyte preconcentration or for steric/electrostatic manipulation of the dynamics of redox‐tagged binding moieties. These unique characteristics of RNEs, in addition to the mitigation of electrode fouling by the nanoporous films, will enable the development of pretreatment‐free electrochemical sensors for complex matrix solutions.

     
    more » « less
  4. Nanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode. Such redox-cycling reactions are facilitated by the nanostructure that increases the probabilities of both reactant–electrode and product–redox-capacitor encounters ( i.e. , the nanoconfinement effect), resulting in substantial signal amplification. Using redox-capacitor-tethered Au nanopillar electrodes, we demonstrate improved sensitivity for measuring pyocyanin (bacterial metabolite). This study paves a new way of using nanostructured materials in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials. 
    more » « less
  5. Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal–insulator–metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AF RC , as large as 55-fold with Ru(NH 3 ) 6 2/3+ , indicative of capture efficiencies at the top and bottom electrodes, Φ t,b , exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AF RC increases as the pore diameter, at constant pore spacing, increases in the range 200–500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000–460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 μM to 10 mM and a small capacitive current with scan rate up to 100 V s −1 . At the lowest concentrations, the average pore occupancy is 〈 n 〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays. 
    more » « less