skip to main content


Title: Lattice‐Distortion‐Enhanced Yield Strength in a Refractory High‐Entropy Alloy
Abstract

Severe distortion is one of the four core effects in single‐phase high‐entropy alloys (HEAs) and contributes significantly to the yield strength. However, the connection between the atomic‐scale lattice distortion and macro‐scale mechanical properties through experimental verification has yet to be fully achieved, owing to two critical challenges: 1) the difficulty in the development of homogeneous single‐phase solid‐solution HEAs and 2) the ambiguity in describing the lattice distortion and related measurements and calculations. A single‐phase body‐centered‐cubic (BCC) refractory HEA, NbTaTiVZr, using thermodynamic modeling coupled with experimental verifications, is developed. Compared to the previously developed single‐phase NbTaTiV HEA, the NbTaTiVZr HEA shows a higher yield strength and comparable plasticity. The increase in yield strength is systematically and quantitatively studied in terms of lattice distortion using a theoretical model, first‐principles calculations, synchrotron X‐ray/neutron diffraction, atom‐probe tomography, and scanning transmission electron microscopy techniques. These results demonstrate that severe lattice distortion is a core factor for developing high strengths in refractory HEAs.

 
more » « less
Award ID(s):
1945380 1809640
NSF-PAR ID:
10455573
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
49
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young’s, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation–dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy. 
    more » « less
  2. Abstract

    Severe lattice distortion is a prominent feature of high-entropy alloys (HEAs) considered a reason for many of those alloys’ properties. Nevertheless, accurate characterizations of lattice distortion are still scarce to only cover a tiny fraction of HEA’s giant composition space due to the expensive experimental or computational costs. Here we present a physics-informed statistical model to efficiently produce high-throughput lattice distortion predictions for refractory non-dilute/high-entropy alloys (RHEAs) in a 10-element composition space. The model offers improved accuracy over conventional methods for fast estimates of lattice distortion by making predictions based on physical properties of interatomic bonding rather than atomic size mismatch of pure elements. The modeling of lattice distortion also implements a predictive model for yield strengths of RHEAs validated by various sets of experimental data. Combining our previous model on intrinsic ductility, a data mining design framework is demonstrated for efficient exploration of strong and ductile single-phase RHEAs.

     
    more » « less
  3. Abstract

    High entropy alloys (HEA) are an unusual class of materials where mixtures of elements are stochastically arrayed on a simple crystalline lattice. These systems exhibit remarkable functionality, often along several distinct axes: e.g., the examples [TaNb]1-x(TiZrHf)xare high strength and damage resistant refractory metals that also exhibit superconductivity with large upper critical fields. Here we report the discovery of anf-electron containing HEA, [TaNb]0.31(TiUHf)0.69, which is the first to include an actinide ion. Similar to the Zr-analogue, this material crystallizes in a body-centered cubic lattice with the lattice constanta = 3.41(1) Å and exhibits phonon mediated superconductivity with a transition temperaturesTc ≈ 3.2 K and upper critical fieldsHc2 ≈ 6.4 T. These results expand this class of materials to include actinide elements, shows that superconductivity is robust in this sub-group, and opens the path towards leveraging HEAs as functional waste forms for a variety of radioisotopes.

     
    more » « less
  4. The microstructure, Vickers hardness, and compressive properties of novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys (HEAs) were studied. The alloys were fabricated by vacuum-arc melting and the characteristics of these alloys were explored. The microstructures of all the alloys exhibited a typical morphology of dendritic and eutectic structures. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys are essentially single phase, consisting of a disordered body-centered-cubic (BCC) phase, whereas the VCrFeTa0.2W0.2 alloy contains fine, nanoscale precipitates distributed in the BCC matrix. The lattice parameters and compositions of the identified phases were investigated. The alloys have Vickers hardness values ranging from 546 HV0.2 to 1135 HV0.2 with the x ranging from 0.1 to 1, respectively. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys exhibit compressive yield strengths of 1341 MPa and 1742 MPa, with compressive plastic strains of 42.2% and 35.7%, respectively. VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys have excellent hardness after annealing for 25 h at 600–1000 °C, and presented compressive yield strength exceeding 1000 MPa with excellent heat-softening resistance at 600–800 °C. By applying the HEA criteria, Ta and W additions into the VCrFeTaW are proposed as a family of candidate materials for fusion reactors and high-temperature structural applications. 
    more » « less
  5. High-entropy alloys (HEAs) with good ductility and high strength are usually prepared by a combination of forging and heat-treatment processes. In comparison, the as-cast HEAs typically do not reach strengths similar to those of HEAs produced by the forging and heat-treatment processes. Here we report a novel equiatomic-ratio CoCrCuMnNi HEA prepared by vacuum arc melting. We observe that this HEA has excellent mechanical properties, i.e. , a yield strength of 458 MPa, and an ultimate tensile strength of 742 MPa with an elongation of 40%. Many nanometer precipitates (5–50 nm in size) and domains (5–10 nm in size) are found in the inter-dendrite and dendrite zones of the produced HEA, which is the key factor for its excellent mechanical properties. The enthalpy of mixing between Cu and Mn, Cr, Co, or Ni is higher than those of mixing between any two of Cr, Co, Ni and Mn, which leads to the separation of Cu from the CoCrCuMnNi HEA. Furthermore, we reveal the nanoscale-precipitate-phase-forming mechanism in the proposed HEA. 
    more » « less