skip to main content

Title: Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with Sn shells

Improving materials used to make qubits is crucial to further progress in quantum information processing. Of particular interest are semiconductor-superconductor heterostructures that are expected to form the basis of topological quantum computing. We grew semiconductor indium antimonide nanowires that were coated with shells of tin of uniform thickness. No interdiffusion was observed at the interface between Sn and InSb. Tunnel junctions were prepared by in situ shadowing. Despite the lack of lattice matching between Sn and InSb, a 15-nanometer-thick shell of tin was found to induce a hard superconducting gap, with superconductivity persisting in magnetic field up to 4 teslas. A small island of Sn-InSb exhibits the two-electron charging effect. These findings suggest a less restrictive approach to fabricating superconducting and topological quantum circuits.

Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10224660
Journal Name:
Science
Volume:
372
Issue:
6541
Page Range or eLocation-ID:
p. 508-511
ISSN:
0036-8075
Publisher:
American Association for the Advancement of Science (AAAS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid semiconductor-superconductor nanowires have emerged as a promising platform for realizing topological superconductivity (TSC). Here, we present a route to TSC using magnetic flux applied to a full superconducting shell surrounding a semiconducting nanowire core. Tunneling into the core reveals a hard induced gap near zero applied flux, corresponding to zero phase winding, and a gapped region with a discrete zero-energy state around one applied flux quantum, corresponding to 2π phase winding. Theoretical analysis indicates that the winding of the superconducting phase can induce a transition to a topological phase supporting Majorana zero modes. Measured Coulomb blockade peak spacing aroundmore »one flux quantum shows a length dependence that is consistent with the existence of Majorana modes at the ends of the nanowire.

    « less
  2. Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, wemore »find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport.« less
  3. Novel many-body and topological electronic phases can be created in assemblies of interacting spins coupled to a superconductor, such as one-dimensional topological superconductors with Majorana zero modes (MZMs) at their ends. Understanding and controlling interactions between spins and the emergent band structure of the in-gap Yu–Shiba–Rusinov (YSR) states they induce in a superconductor are fundamental for engineering such phases. Here, by precisely positioning magnetic adatoms with a scanning tunneling microscope (STM), we demonstrate both the tunability of exchange interaction between spins and precise control of the hybridization of YSR states they induce on the surface of a bismuth (Bi) thinmore »film that is made superconducting with the proximity effect. In this platform, depending on the separation of spins, the interplay among Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, spin–orbit coupling, and surface magnetic anisotropy stabilizes different types of spin alignments. Using high-resolution STM spectroscopy at millikelvin temperatures, we probe these spin alignments through monitoring the spin-induced YSR states and their energy splitting. Such measurements also reveal a quantum phase transition between the ground states with different electron number parity for a pair of spins in a superconductor tuned by their separation. Experiments on larger assemblies show that spin–spin interactions can be mediated in a superconductor over long distances. Our results show that controlling hybridization of the YSR states in this platform provides the possibility of engineering the band structure of such states for creating topological phases.

    « less
  4. Topological superconductivity in quasi-one-dimensional systems is a novel phase of matter with possible implications for quantum computation. Despite years of effort, a definitive signature of this phase in experiments is still debated. A major cause of this ambiguity is the side effects of applying a magnetic field: induced in-gap states, vortices, and alignment issues. Here we propose a planar semiconductor–superconductor heterostructure as a platform for realizing topological superconductivity without applying a magnetic field to the two-dimensional electron gas hosting the topological state. Time-reversal symmetry is broken only by phase biasing the proximitizing superconductors, which can be achieved using extremely smallmore »fluxes or bias currents far from the quasi-one-dimensional channel. Our platform is based on interference between this phase biasing and the phase arising from strong spin–orbit coupling in closed electron trajectories. The principle is demonstrated analytically using a simple model, and then shown numerically for realistic devices. We show a robust topological phase diagram, as well as explicit wavefunctions of Majorana zero modes. We discuss experimental issues regarding the practical implementation of our proposal, establishing it as an accessible scheme with contemporary experimental techniques.

    « less
  5. Turning on superconductivity in a topologically nontrivial insulator may provide a route to search for non-Abelian topological states. However, existing demonstrations of superconductor-insulator switches have involved only topologically trivial systems. Here we report reversible, in situ electrostatic on-off switching of superconductivity in the recently established quantum spin Hall insulator monolayer tungsten ditelluride (WTe2). Fabricated into a van der Waals field-effect transistor, the monolayer’s ground state can be continuously gate-tuned from the topological insulating to the superconducting state, with critical temperaturesTcup to ~1 kelvin. Our results establish monolayer WTe2as a material platform for engineering nanodevices that combine superconducting and topological phasesmore »of matter.

    « less