skip to main content


Title: Diverse datasets and a customizable benchmarking framework for phishing
Phishing is a serious challenge that remains largely unsolved despite the efforts of many researchers. In this paper, we present datasets and tools to help phishing researchers. First, we describe our efforts on creating high quality, diverse and representative email and URL/website datasets for phishing and making them publicly available. Second, we describe PhishBench, a benchmarking framework, which automates the extraction of more than 200 features, implements more than 30 classifiers, and 12 evaluation metrics, for detection of phishing emails, websites and URLs. Using PhishBench, the research community can easily run their models and benchmark their work against the work of others, who have used common dataset sources for emails (Nazario, SpamAssassin, WikiLeaks, etc.) and URLs (PhishTank, APWG, Alexa, etc.).  more » « less
Award ID(s):
1659755
NSF-PAR ID:
10224700
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Sixth International Workshop on Security and Privacy Analytics
Page Range / eLocation ID:
35-41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing studies have demonstrated that using traditional machine learning techniques, phishing detection simply based on the features of URLs can be very effective. In this paper, we explore the deep learning approach and build four RNN (Recurrent Neural Network) models that only use lexical features of URLs for detecting phishing attacks. We collect 1.5 million URLs as the dataset and show that our RNN models can achieve a higher than 99% detection accuracy without the need of any expert knowledge to manually identify the features. However, it is well known that RNNs and other deep learning techniques are still largely in black boxes. Understanding the internals of deep learning models is important and highly desirable to the improvement and proper application of the models. Therefore, in this work, we further develop several unique visualization techniques to intensively interpret how RNN models work internally in achieving the outstanding phishing detection performance. Especially, we identify and answer six important research questions, showing that our four RNN models (1) are complementary to each other and can be combined into an ensemble model with even better accuracy, (2) can well capture the relevant features that were manually extracted and used in the traditional machine learning approach for phishing detection, and (3) can help identify useful new features to enhance the accuracy of the traditional machine learning approach. Our techniques and experience in this work could be helpful for researchers to effectively apply deep learning techniques in addressing other real-world security or privacy problems. 
    more » « less
  2. Phishing is the simplest form of cybercrime with the objective of baiting people into giving away delicate information such as individually recognizable data, banking and credit card details, or even credentials and passwords. This type of simple yet most effective cyber-attack is usually launched through emails,phone calls, or instant messages. The credential or private data stolen are then used to get access to critical records of the victims and can result in extensive fraud and monetary loss.Hence, sending malicious messages to victims is a stepping stone of the phishing procedure. A phisher usually setups a deceptive website, where the victims are conned into entering credentials and sensitive information. It is therefore important to detect these types of malicious websites before causing any harmful damages to victims. Inspired by the evolving nature of the phishing websites, this paper introduces a novel approach based on deep reinforcement learning to model and detect malicious URLs. The proposed model is capable of adapting to the dynamic behavior of the phishing websites and thus learn the features associated with phishing website detection. 
    more » « less
  3. Phishing websites remain a persistent security threat. Thus far, machine learning approaches appear to have the best potential as defenses. But, there are two main concerns with existing machine learning approaches for phishing detection. The first is the large number of training features used and the lack of validating arguments for these feature choices. The second concern is the type of datasets used in the literature that are inadvertently biased with respect to the features based on the website URL or content. To address these concerns, we put forward the intuition that the domain name of phishing websites is the tell-tale sign of phishing and holds the key to successful phishing detection. Accordingly, we design features that model the relationships, visual as well as statistical, of the domain name to the key elements of a phishing website, which are used to snare the end-users. The main value of our feature design is that, to bypass detection, an attacker will find it very difficult to tamper with the visual content of the phishing website without arousing the suspicion of the end user. Our feature set ensures that there is minimal or no bias with respect to a dataset. Our learning model trains with only seven features and achieves a true positive rate of 98% and a classification accuracy of 97%, on sample dataset. Compared to the state-of-the-art work, our per data instance classification is 4 times faster for legitimate websites and 10 times faster for phishing websites. Importantly, we demonstrate the shortcomings of using features based on URLs as they are likely to be biased towards specific datasets. We show the robustness of our learning algorithm by testing on unknown live phishing URLs and achieve a high detection accuracy of 99.7%. 
    more » « less
  4. Abstract Purpose The ability to identify the scholarship of individual authors is essential for performance evaluation. A number of factors hinder this endeavor. Common and similarly spelled surnames make it difficult to isolate the scholarship of individual authors indexed on large databases. Variations in name spelling of individual scholars further complicates matters. Common family names in scientific powerhouses like China make it problematic to distinguish between authors possessing ubiquitous and/or anglicized surnames (as well as the same or similar first names). The assignment of unique author identifiers provides a major step toward resolving these difficulties. We maintain, however, that in and of themselves, author identifiers are not sufficient to fully address the author uncertainty problem. In this study we build on the author identifier approach by considering commonalities in fielded data between authors containing the same surname and first initial of their first name. We illustrate our approach using three case studies. Design/methodology/approach The approach we advance in this study is based on commonalities among fielded data in search results. We cast a broad initial net—i.e., a Web of Science (WOS) search for a given author’s last name, followed by a comma, followed by the first initial of his or her first name (e.g., a search for ‘John Doe’ would assume the form: ‘Doe, J’). Results for this search typically contain all of the scholarship legitimately belonging to this author in the given database (i.e., all of his or her true positives), along with a large amount of noise, or scholarship not belonging to this author (i.e., a large number of false positives). From this corpus we proceed to iteratively weed out false positives and retain true positives. Author identifiers provide a good starting point—e.g., if ‘Doe, J’ and ‘Doe, John’ share the same author identifier, this would be sufficient for us to conclude these are one and the same individual. We find email addresses similarly adequate—e.g., if two author names which share the same surname and same first initial have an email address in common, we conclude these authors are the same person. Author identifier and email address data is not always available, however. When this occurs, other fields are used to address the author uncertainty problem. Commonalities among author data other than unique identifiers and email addresses is less conclusive for name consolidation purposes. For example, if ‘Doe, John’ and ‘Doe, J’ have an affiliation in common, do we conclude that these names belong the same person? They may or may not; affiliations have employed two or more faculty members sharing the same last and first initial. Similarly, it’s conceivable that two individuals with the same last name and first initial publish in the same journal, publish with the same co-authors, and/or cite the same references. Should we then ignore commonalities among these fields and conclude they’re too imprecise for name consolidation purposes? It is our position that such commonalities are indeed valuable for addressing the author uncertainty problem, but more so when used in combination. Our approach makes use of automation as well as manual inspection, relying initially on author identifiers, then commonalities among fielded data other than author identifiers, and finally manual verification. To achieve name consolidation independent of author identifier matches, we have developed a procedure that is used with bibliometric software called VantagePoint (see www.thevantagepoint.com) While the application of our technique does not exclusively depend on VantagePoint, it is the software we find most efficient in this study. The script we developed to implement this procedure is designed to implement our name disambiguation procedure in a way that significantly reduces manual effort on the user’s part. Those who seek to replicate our procedure independent of VantagePoint can do so by manually following the method we outline, but we note that the manual application of our procedure takes a significant amount of time and effort, especially when working with larger datasets. Our script begins by prompting the user for a surname and a first initial (for any author of interest). It then prompts the user to select a WOS field on which to consolidate author names. After this the user is prompted to point to the name of the authors field, and finally asked to identify a specific author name (referred to by the script as the primary author) within this field whom the user knows to be a true positive (a suggested approach is to point to an author name associated with one of the records that has the author’s ORCID iD or email address attached to it). The script proceeds to identify and combine all author names sharing the primary author’s surname and first initial of his or her first name who share commonalities in the WOS field on which the user was prompted to consolidate author names. This typically results in significant reduction in the initial dataset size. After the procedure completes the user is usually left with a much smaller (and more manageable) dataset to manually inspect (and/or apply additional name disambiguation techniques to). Research limitations Match field coverage can be an issue. When field coverage is paltry dataset reduction is not as significant, which results in more manual inspection on the user’s part. Our procedure doesn’t lend itself to scholars who have had a legal family name change (after marriage, for example). Moreover, the technique we advance is (sometimes, but not always) likely to have a difficult time dealing with scholars who have changed careers or fields dramatically, as well as scholars whose work is highly interdisciplinary. Practical implications The procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research, especially when the name under consideration is a more common family name. It is more effective when match field coverage is high and a number of match fields exist. Originality/value Once again, the procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research. It combines preexisting with more recent approaches, harnessing the benefits of both. Findings Our study applies the name disambiguation procedure we advance to three case studies. Ideal match fields are not the same for each of our case studies. We find that match field effectiveness is in large part a function of field coverage. Comparing original dataset size, the timeframe analyzed for each case study is not the same, nor are the subject areas in which they publish. Our procedure is more effective when applied to our third case study, both in terms of list reduction and 100% retention of true positives. We attribute this to excellent match field coverage, and especially in more specific match fields, as well as having a more modest/manageable number of publications. While machine learning is considered authoritative by many, we do not see it as practical or replicable. The procedure advanced herein is both practical, replicable and relatively user friendly. It might be categorized into a space between ORCID and machine learning. Machine learning approaches typically look for commonalities among citation data, which is not always available, structured or easy to work with. The procedure we advance is intended to be applied across numerous fields in a dataset of interest (e.g. emails, coauthors, affiliations, etc.), resulting in multiple rounds of reduction. Results indicate that effective match fields include author identifiers, emails, source titles, co-authors and ISSNs. While the script we present is not likely to result in a dataset consisting solely of true positives (at least for more common surnames), it does significantly reduce manual effort on the user’s part. Dataset reduction (after our procedure is applied) is in large part a function of (a) field availability and (b) field coverage. 
    more » « less
  5. Abstract

    Numerous studies of human user behaviours in cybersecurity tasks have used traditional research methods, such as self-reported surveys or empirical experiments, to identify relationships between various factors of interest and user security performance. This work takes a different approach, applying computational cognitive modelling to research the decision-making of cybersecurity users. The model described here relies on cognitive memory chunk activation to analytically simulate the decision-making process of a user classifying legitimate and phishing emails. Suspicious-seeming cues in each email are processed by examining similar, past classifications in long-term memory. We manipulate five parameters (Suspicion Threshold, Maximum Cues Processed, Weight of Similarity, Flawed Perception Level, Legitimate-to-Phishing Email Ratio in long-term memory) to examine their effects on accuracy, email processing time and decision confidence. Furthermore, we have conducted an empirical, unattended study of US participants performing the same task. Analyses on the empirical study data and simulation output, especially clustering analysis, show that these two research approaches complement each other for more insightful understanding of this phishing detection task. The analyses also demonstrate several limitations of this computational model that cannot easily capture certain user types and phishing detection strategies, calling for a more dynamic and sophisticated model construction.

     
    more » « less