skip to main content


Title: A comparison of the chemical bonding and reactivity of Si 8 H 8 O 12 and Ge 8 H 8 O 12 : A theoretical study
Award ID(s):
1800014 2018427
NSF-PAR ID:
10224751
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
154
Issue:
16
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 164305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Keggin‐type polyaluminum cations belong to a unique class of compounds with their large positive charge, hydroxo bridges, and divergent isomerization/oligomerization. Previous reports indicated that oligomerization of this species can only occur through one isomer (δ), but herein we report the isolation of largest Keggin‐type cluster that occurs through self‐condensation of four ϵ‐isomers ϵ‐GeAl128+to form [Ge4O16Al48(OH)108(H2O)24]20+cluster (Ge4Al48). The cluster was crystallized and structurally characterized by single‐crystal X‐ray diffraction (SCXRD) and the elemental composition was confirmed by ICP‐MS and SEM‐EDS. Additional dynamic light scattering experiments confirms the presence of theGe4Al48in thermally aged solutions. DFT calculations reveal that a single atom Ge substitution in tetrahedral site of ϵ‐isomer is the key for the formation ofGe4Al48because it activates deprotonation at key surface sites that control the self‐condensation process.

     
    more » « less
  2. Abstract

    Keggin‐type polyaluminum cations belong to a unique class of compounds with their large positive charge, hydroxo bridges, and divergent isomerization/oligomerization. Previous reports indicated that oligomerization of this species can only occur through one isomer (δ), but herein we report the isolation of largest Keggin‐type cluster that occurs through self‐condensation of four ϵ‐isomers ϵ‐GeAl128+to form [Ge4O16Al48(OH)108(H2O)24]20+cluster (Ge4Al48). The cluster was crystallized and structurally characterized by single‐crystal X‐ray diffraction (SCXRD) and the elemental composition was confirmed by ICP‐MS and SEM‐EDS. Additional dynamic light scattering experiments confirms the presence of theGe4Al48in thermally aged solutions. DFT calculations reveal that a single atom Ge substitution in tetrahedral site of ϵ‐isomer is the key for the formation ofGe4Al48because it activates deprotonation at key surface sites that control the self‐condensation process.

     
    more » « less