skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A comparison of the chemical bonding and reactivity of Si 8 H 8 O 12 and Ge 8 H 8 O 12 : A theoretical study
Award ID(s):
1800014 2018427
PAR ID:
10224751
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
154
Issue:
16
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 164305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the interest in sulfur monoxide (SO) among astrochemists, spectroscopists, inorganic chemists, and organic chemists, its interaction with water remains largely unexplored. We report the first high level theoretical geometries for the two minimum energy complexes formed by sulfur monoxide and water, and we report energies using basis sets as large as aug-cc-pV(Q+d)Z and correlation effects through perturbative quadruple excitations. One structure of SO⋯H 2 O is hydrogen bonded and the other chalcogen bonded. The hydrogen bonded complex has an electronic energy of −2.71 kcal mol −1 and a zero kelvin enthalpy of −1.67 kcal mol −1 , while the chalcogen bonded complex has an electronic energy of −2.64 kcal mol −1 and a zero kelvin enthalpy of −2.00 kcal mol −1 . We also report the transition state between the two structures, which lies below the SO⋯H 2 O dissociation limit, with an electronic energy of −1.26 kcal mol −1 and an enthalpy of −0.81 kcal mol −1 . These features are much sharper than for the isovalent complex of O 2 and H 2 O, which only possesses one weakly bound minimum, so we further analyze the structures with open-shell SAPT0. We find that the interactions between O 2 and H 2 O are uniformly weak, but the SO⋯H 2 O complex surface is governed by the superior polarity and polarizability of SO, as well as the diffuse electron density provided by sulfur's extra valence shell. 
    more » « less
  2. null (Ed.)
    The water reactivity of the boroauride complex ([Au(B 2 P 2 )][K(18-c-6)]; (B 2 P 2 , 9,10-bis(2-(diisopropylphosphino)-phenyl)-9,10-dihydroboranthrene) and its corresponding two-electron oxidized complex, Au(B 2 P 2 )Cl, are presented. Au(B 2 P 2 )Cl is tolerant to H 2 O and forms the hydroxide complex Au(B 2 P 2 )OH in the presence of H 2 O and triethylamine. [Au(B 2 P 2 )]Cl and [Au(B 2 P 2 )]OH are poor Lewis acids as judged by the Gutmann–Becket method, with [Au(B 2 P 2 )]OH displaying facile hydroxide exchange between B atoms of the DBA ring as evidenced by variable temperature NMR spectroscopy. The reduced boroauride complex [Au(B 2 P 2 )] − reacts with 1 equivalent of H 2 O to produce a hydride/hydroxide product, [Au(B 2 P 2 )(H)(OH)] − , that rapidly evolves H 2 upon further H 2 O reaction to yield the dihydroxide compound, [Au(B 2 P 2 )(OH) 2 ] − . [Au(B 2 P 2 )]Cl can be regenerated from [Au(B 2 P 2 )(OH) 2 ] − via HCl·Et 2 O, providing a synthetic cycle for H 2 evolution from H 2 O enabled by O–H oxidative addition at a diboraanthracene unit. 
    more » « less
  3. To cut CO2emissions, we propose to directly convert shale gas into value-added products with a new H2/O2co-transport membrane (HOTM) reactor. A Multiphysics model has been built to simulate the membrane and the catalytic bed with parameters obtained from experimental validation. The model was used to compare C2 yield and CH4conversion rate between the membrane reactor and the state-of-the-art fixed-bed reactor with the same dimensions and operating conditions. The results indicate that (1) the membrane reactor is more efficient in consuming CH4for a given amount of fed O2. (2) The C2 selectivity of the membrane reactor is higher due to the gradual addition of O2into the reactor. (3) The current proposed membrane reactor can have a decent proton molar flux density but most of the proton molar flux will contribute to producing H2O on the feed side under the current operating conditions. The paper for the first-time projects the performance of the membrane reactor for combined H2O/H2removal and C2 production. It could be used as important guidance for experimentalists to design next generation natural gas conversion reactors. 
    more » « less